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Motivation

• Studying rare transition states of systems of particles is
extremely important but can be difficult

• Rare transitions occur in many physical systems, such as
proteins and clusters of particles

• The energy landscape of complex systems impedes
exploration of transition states

• Development of algorithms that probe these rare transition
states is necessary
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Free Energy Landscapes

• Goal is to probe finite
temperature transitions

• Energy 6= Free Energy

• Energy and free energy
landscapes are unknown
before simulation

• Classical Equilibrium
Statistical Mechanics
(P ∼ e−βH)

http://www.btinternet.com/ martin.chaplin/protein2.html
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Equilibrium Statistical Mechanics

• Molecular Dynamics

• Brownian Dynamics

• Monte Carlo

• Combined Methods
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Molecular Dynamics

• Familiar equations for physicists

• md2x
dt2

= F

• Deterministic and fixed energy

• Long waiting times if PE > NkBT

• Cooperative movement of particles
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Brownian Dynamics

• Over-damped Langevin dynamics

• dx
du = F +

√
2kBT dW

du

• W is the Wiener process (white noise)

• Quadratic variation:
∑

∆x2 = 2kBTU

• Fractal nature
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Brownian Dynamics
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Monte-Carlo

x⇒ current state
x′ ⇒ proposed move
Π(x, x′)⇒ the probability of choosing x′ given x

Accept/reject based on the Metropolis-like criteria
• Unbiased (Metropolis)

• e−β∆H > Rand

• Biased (Metropolis-Hastings)

• exp(−β∆H)Π(x,x′)
Π(x′,x) > Rand

Importance sampling with detailed balance
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Combined Methods

Smart Monte Carlo
The biased proposed move is generated using Brownian
dynamics: Accept/reject with Metropolis-Hastings criteria

Hybrid Monte Carlo

The biased proposed move is generated using molecular
dynamics: Accept/reject with Metropolis-Hastings criteria

Error Correction
Monte-Carlo step corrects for the finite step size in BD/MD
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Path Space

• Goal: To describe transitions in terms of paths

• Such transitions can be rare events

• Paths are inherently infinite dimensional objects

• Route: Create robust and efficient methods to perform
sampling in an infinite dimensional space

• Will do the above by imposing boundary conditions and
thus forcing the transition of interest

In the next few slides, I will show how to devise one such
method. The starting point is the SDE for Brownian dynamics.
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Onsager-Machlup Functional

Discreteization of Brownian dynamics: ∆x
∆u = F +

√
2kBT
∆u ξi

The Onsager-Machlup functional

Ppath ∝ exp

(
−1

2

∑
i

ξ2
i

)
= exp

(
− I

2kBT

)

I =
∫ U

0
du

{
1
2

(
∂x

∂u

)2

+G

}
In the continuum limit the path potential is

G =
1
2
|∇V |2 − kBT∇2V

The path starts and ends at specified points.
A transition is forced to happen during time interval U .
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Path Space Effective Hamiltonian

Transform to k-space (frequency) to facilitate uniform
convergence

x(u) =
√

2U
∑
k

Ak
πk

sin
(
πku

U

)
Remember that Ppath ∝ exp

[
− I

2kBT

]
This allows us to define an effective Hamiltonian

Heff =
1
2

∑
k

Ȧ2
k + I =

1
2

∑
k

Ȧ2
k +

1
2

∑
k

A2
k +

∫ U

0
du G

The masses are chosen to be diagonal in k-space (frequency)
All modes have the same natural frequency (2π)
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Overview of the HMC Algorithm

1. Generate zero temperature path by minimizing I

2. Add appropriate thermal fluctuation to the path positions

3. Choose velocities consistent with the temperature

4. Use molecular dynamics to evolve the path

5. Test proposed move using Monte-Carlo

6. Iterate steps 3, 4 and 5
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Implementation of HMC

Molecular Dynamics

• Integrate (deterministic) Hamilton’s equations many times
• Use a leap frog algorithm to reduce error
• Nt · h ≈ π to maximize sampling of phase space

Monte Carlo

• Correct for errors that are introduced with above
integration

• Integrate over multiple steps to de-correlate the Markov
chain
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Lennard-Jones Potential and LJ14 Cluster

Need for a simple and well understood test problem

VLJ = 4
N∑
i,j

[(
1
rij

)12

−
(

1
rij

)6
]

Cluster of 13 particles in a hexagonal close-packed configuration

Single nearest neighbor particle on outside of cluster
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Lennard-Jones Potential and LJ14 Cluster

Investigate the low energy mode discovered by Beck et. al. [1]
• 5 distinct states for T=0 path
• Two pairs of degenerate states: (A, E) and (B, D).
• Outer group of particles remain approximately static

during the transition
• Inner 4 particles form a chain and “snake” through the

cluster
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The Energy Landscape

Zero Temperature
• Obtained by minimizing I
• Nonphysical solution
• Cluster spends same order

of time at each critical
point

Finite Temperature T = 0.35
• Majority of time spent in

low energy state
• Quick transition after

traversing the energy
barrier
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Reaction Coordinate

η =
(
~R4 − ~R10

)
· n̂

Maps a configuration along the path to the amount the
transition has progressed
• (~R4 − ~R10) difference in center of mass of outside cluster to inside chain

• n̂ is the eigenvector corresponding to the minimum eigenvalue of the moment of inertia
of the chain
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Evolution of the Path

• Strengths
• Efficient sampling of path space
• Allows a noise enhanced zero

temperature starting path
• Can characterize the instanton

for moderate path sizes
• Weaknesses

• Transition rates are only
accessible in the long path
length limit.

• Risk of inefficient sampling with
improper choice of parameters
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Intermediate State

• Able to investigate intermediate states efficiently
• No a priori knowledge of any intermediate state(s)
• States B, C and D may not exist as separate entities
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Challenges

Boundary Conditions

Algorithm does not supply information about the path
Annealing an unphysical starting path is computationally
expensive

Path Length

BC’s act as an unphysical external force if path length is too
short
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Challenges

Thermal Noise
Fractal nature of the path requires calculations of noise
Quadratic variation imposes limit on ∆u
Small ∆u ⇒ calculation of noise

Computational Complications

Implementation of parallel algorithm is necessary for large
problems
Distributed memory system
Scaling with an increase of system size
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Possibilities for Future Work

2D LJ system

Liquid-gas phase transition of Lennard-Jones particles in two
dimensions
Size and shape of critical droplets (sufficiently distant from the
critical point)[2]

Coarse grained protein models

Very large systems require a coarse-grain model
Uncover intermediate states and impediments to proper folding
Need to understand what an appropriate model might be
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Derivation of the Path Potential

Discrete Brownian eqn: ∆x
∆u = F +

√
2kBT
∆u ξi

Forward: kBT
2

∑
ξ2
i,→ =

∑
i

∆u
4

[(
∆x
∆u

)2 + |Fi|2 − 2Fi
xi+1−xi

∆u

]
Back: kBT

2

∑
ξ2
i,← =

∑
i

∆u
4

[(
∆x
∆u

)2 + |Fi+1|2 − 2Fi+1
xi−xi+1

∆u

]
Avg: kBT

4

∑(
ξ2
i,→ + ξ2

i,←

)
=
∑

i
∆u
4

[(
∆x
∆u

)2 + F 2 + F ′∆x
2

∆u

]
With the substitutions: F ′ = −∇2V and ∆x2

∆u = 2kBT

kBT
4

∑(
ξ2
i,→ + ξ2

i,←

)
= 1

2

∫ U
0 du

1
2

(
∂x
∂u

)2
+

1
2
|∇V |2 − kBT∇2V︸ ︷︷ ︸

G





Appendix

Controlling Errors in Molecular Dynamics

Errors and Hamilton’s Equations

• ∆E ∼ O(t2) necessitates a integration with error in t2

• Hamilton’s Equations: dp
dt = −dH

dq and dq
dt = dH

dp

• Using Heff we find: v̇ = −A− S.T.[∇G] and Ȧ = v

Leap Frog Type Algorithm

Half Step ⇒ v(t+ h/2)− v(t) = −h
2 · S.T.[∇G]

Full Step ⇒ v̇ = −A and Ȧ = v (Analytic Rotation)
Half Step ⇒ v(t+ h)− ṽ(t+ h/2) = −h

2 · S.T.[∇G]

Transform the above equations from k-space to path space
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Quadratic Variation Along the Path

The correct thermal ‘noise’ along the path is governed by the
quadratic variation. From Brownian dynamics:

∆x
∆u

= F +

√
2kBT
∆u

ξi

On average, the force (F ) is zero. The expectation of ξ2
i = 1.

∑
i

(
∆x
∆u

)2

=
∑
i

2kBT
∆u

ξ2
i∑

i

(xi − xi−1)2 = 2kBTU
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Equilibrium Average of G

G =
∑
i,α

{
1
2

(
∂V

∂xiα

)2

− kBT
(
∂2V

∂x2
iα

)}
〈(

∂V

∂xiα

)2
〉

=
1
Z

∫
dxdN

(
∂V

∂xiα

)2

exp (− V

kBT
)

u = − exp (− V
kBT

) then du = dx
kBT

∂V
∂xiα

exp (− V
kBT

).

v = ∂V
∂xiα

then dv = ∂2V
∂x2
iα
dx.〈(

∂V

∂xiα

)2
〉

=
kBT

Z

∫
v du = −kBT

Z

∫
u dv = kBT

〈
∂2V

∂x2
iα

〉

〈 G 〉 = −1
2

∑
i,α

〈(
∂V

∂xiα

)2
〉

= −kBT
2

∑
i,α

〈(
∂2V

∂x2
iα

)〉
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Calculation of an Appropriate Path Length

I1 =
∫
du
∑
i,α

1
2

(
dx

du

)2

=
(

1
∆u

)(
3Np

2

)
2TU

I2 =
∫
du G ≈ GU

Now for good statistics we impose I1 = 100I2

∆u =
3NpT

100G
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