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In this work, we consider a particle moving in the presence of thermal fluctuations and via a conservative force. Historically, Onsager and Machlup described this
situation within the picture of Brownian dynamics. Here we present an alternative approach based on the Hybrid (or Hamiltonian) Monte-Carlo (HMC) method.
The physically interesting situation is when the particle moves from one potential basin to another, across an energy barrier that is large compared to the thermal
energy. We concentrate on ”"double-ended” transition paths; paths that begin in one basin and end in a different basin. The novel HMC approach presented
here relies on using a discrete representation of the path. For long paths, the method is consistent with the Boltzmann distribution, and the errors due to this
representation are clear. In addition, we compare this novel approach to the continuous time limit of Brownian dynamics and uncover a singular behavior.

e The intent of this work is to develop an eflicient computational algorithm
to characterize how a molecule undergoes a transition between long lived
states.

e We focus on double ended path space methods, where the paths are con-
strained to begin and end at specified positions.

e

e T'wo methods are presented:

— The continuous time limit algorithm, which has roots in Brownian
dynamics.

— A novel finite time method based on Hybrid Monte-Carlo (HMC).

Brownian Dynamics

The systems of interest reside in the over-damped Langevin regime (Brownian),
where all particles have reached terminal velocity. The particles are governed by
a conservative force, F'(xz), at a temperature € and obey the following equation
of motion

dx = F(z) dt + v/2e dW, r1 = xo + Fo At + V2eALE;

Using the result of Onsager and Machlup|1], we can define the probability of
any path by looking at the underlying random fluctuations of the particles. For
any given path, this probability is expressed as
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The methods we are developing attempt to sample double ended paths which
obey this probability.

Continuous Time Representiation

In the continuous time limit the path probability|2]|[3] is derived using the Ito

calculus and the Girsanov theorem (infinity in the probability is regularized by
the probability with F' = 0, Py)
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Implication: Some paths are more probable than others. This violates equi-
librium thermodynamics, as we show below.

Finite Time-Step Hybrid Monte-Carlo

To gain insight into the limiting process we explore a HMC method|4] where the
finite-time-step errors are known. The Leap-Frog (velocity-Verlet) integrator
gives the following prescription (Note: identify At = h?/2, choose v; from
Maxwell-Boltzmann distribution, and ignore rejections to recover Browninan
dynamics).
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The finite time probability for this path is found by expanding the OM prob-
ability (eq 1):
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The energy error made in this sampling violates detailed balance. In the limit
At — 0, the quadratic variation is satisfied and e — 0, and the cross terms
reduce to the continuous time result:
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!nethod improves the fidelity of the paths. /

We will use a simple one dimensional potential to illustrate our results. The
potential wells are degenerate in energy, but entropy drives the particle to
spend more time in the broad well, according to the Bolzmann probability.
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e Minima: x = —2/5 and x = 8/5

e Barrier Height: Vg =1
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1D Model Results
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by flipping 3 shorter paths end to end, traneous solution of the continuous time limit
forming a path in a non-Boltzmann (red === ) and the Boltzmann path generated
state with multiple transitions. with finite-time HMC (blue e ).

Examples of aged paths generated by sampling the two methods (eq 2 and
3) are shown above. Understanding how the sequence of paths evolve can be
clearly seen by monitoring the amount of the path which is in the wide, entropy
preferred basin, P(x > 0), as the paths evolve for both sampling methods.

Both methods start with identical ini-
tial paths, with P(x>0) = 0.6.

Using the continuous-time expression
(red == ), the path quickly shifts
into the skinny (low-entropy) well. This
contrasts to the evolution of the path
when sampling from the finite-time
expressions (blue «== ), which is
near the expected Boltzmann probabil-
ity (yellow ).
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Discussion and Conclusion

Barrier hopping occurs rarely, but it is still consistent with thermodynamics.
Other, extremely rare events (such as all of the molecules in a room ending
up in a single corner) are so rare that they violate thermodynamics. We are
not interested in those extremely rare events. In particular, for long paths, we
expect to recover equilibrium thermodynamics, even for paths with a double
ended constraint.

Using the probability that comes from the continuous time limit, leads to un-
physical paths which are forced into the narrow well, which is not consistent
with entropic considerations. This effect can be traced back to the form of the
probability (eq 2). The noise originates from the thermal bath and is indepen-
dent of the details of the deterministic force. Thus the Integral Fluctuation
Theorem|5| states that all paths (of the same length) will have the same prob-
ability. By its very nature, the continuous time probability (eq 2) implies that
some paths are more probable than others.

Furthermore, sampling with this probability introduces correlation between
the noise and positions. This skews the velocity distribution, and produces
a non-Maxwell-Boltzmann velocity distribution. We thus argue that the
continuous-time formulation (eq 2) cannot be used as a probability
measure to sample physical paths.

On the other hand, we obtain ”physical results” using the probability distri-
bution that comes from using any small but non-zero time step. The HMC
picture explicitly describes the errors made in the Brownian picture, which
in turn has unphysical consequences. Improving the integrator in the HMC




