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Main point

We have made progress since the abstract was submitted and I have
modified the talk to reflect this progress.

Purpose

Explain the singular nature of the continuous-time Onsager-Machlup
functional. We use a novel approach to show the unphysical nature of
this limit.

Outline

1. Brownian Dynamics and the OM Function

2. The Continuous-Time formulation: Ito and Girsanov

3. New perspective based on a MC method

4. Results and Discussion
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Starting point

I Particles moving in a potential, U, with Force F = −∇U

I In contact with a thermal bath at temperature ε.

I Spatial distribution given by Boltzmann distribution:

exp(−U(x)/ε)
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Brownian dynamics

I ε is temperature

I F (x) is the force F (x) = −∇U(x)

I W represents the Wiener process (White noise)

Stochastic Differential Equation (SDE)

dx = F (x)dt +
√

2ε dW

With a finite time step ∆t, dW →
√

∆t ξi , and the SDE becomes

xi+1 − xi = F (xi )dt +
√

2ε∆t ξi

Quadratic Variation

∑
|∆x |2 → 2N ∆t ε = 2 T ε
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Onsager-Machlup (OM) functional

xi+1 − xi = F (xi )dt +
√

2ε∆t ξi

Eliminate the random variables and express the path probability in terms
of the path variables themselves.

Path probability for the SDE

− ln POM =
∑ 1

2
ξ2
i

=
∆t

2ε

∑
i

1

2

∣∣∣∣∆x

∆t
− F (xi )

∣∣∣∣2
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Continuous-time OM functional

− ln POM =
∆t

2ε

∑
i

1

2

∣∣∣∣∆x

∆t
− F (xi )

∣∣∣∣2
Use Ito’s formula and Girsinov’s theorem to find the probablity of the
path.

Continuous-time limit path probability

− ln PIto =
U(T )− U(0)

2ε
+

1

2ε

∫ T

0

dt

[
1

2

(
dx

dt

)2

+ G (xt)

]

where G is the path potential:

G =
1

2
|F |2 − ε∇2U
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A New Perspective (HMC)

It is difficult to understand the continuous-time limiting process within
Brownian dynamics. Require a method where the finite-time-step errors
are known (single step Hybrid Monte Carlo).

Starting parameters: x0 v0 =
√
ε ξ0 h (time step)

Leap-Frog integrator (symplectic)

x1 = x0 + h v0 +
h2

2
F (x0)

v1 = v0 +
h

2
F (x1) +

h

2
F (x0)

The error in energy δe = 1
2 v 2

1 − 1
2 v 2

0 + U(x1)− U(x0)

Note: If ∆t = h2/2, we recover Brownian dynamics.
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Single step probability

− ln PMB =
v 2

0

2ε
=

1

2ε

[
1

2
v 2

0 +
1

2
v 2

1 + ∆U − δe

]
− ln PMC = − ln{min[1, exp(−δe/2ε)]} =

|δe|+ δe

2ε

Probability for the entire path

− ln PNew =
∆U

2ε
+

∆t

2ε

∑
i

(
1

4

∣∣∣∣∆x

∆t
+ Fi+1

∣∣∣∣2 +
1

4

∣∣∣∣∆x

∆t
− Fi

∣∣∣∣2 +
|δe|
∆t

)

I cross terms: 1
2

∆x
∆t (Fi+1 − Fi ) → 1

2
∆x2

∆t
∆F
∆x → ε∇F

Except for the first term, this process is symmetric in time: no spurious
entropy production.
When ∆t → 0, the quadratic variation is satisfied and δe is small.
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A small detour: 1D potential

I will use a simple one dimensional potential to illustrate my results.
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U(x) =
(3x − 4)4(3x + 2)2
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3

I Barrier Height: UB = 1

I ε = 0.15

Boltzmann probability: entropy drives the particle to spend more time in
the broad well.
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Ito-Girsanov formalism

∑ (
1

2

∣∣∣∣∆x

∆t

∣∣∣∣2 +
1

2
|F |2 − ε∇2U

)
0.0-2/3 4/3

0.0

1.0

0.0-2/3 4/3

0.0

1.0

The initial path is constructed to be consistent with Boltzmann. Clearly
the final path cannot represent physical transitions.

The curvature term is driving the collapse!
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New perspective

∑ (
1

4

∣∣∣∣∆x

∆t
+ Fi+1

∣∣∣∣2 +
1

4

∣∣∣∣∆x

∆t
− Fi

∣∣∣∣2
)

0.0-2/3 4/3
0.0

1.0

0.0-2/3 4/3

0.0

1.0

The quadratic structure is essential for recovering the Boltzmann
distribution along the path.
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Lessons to take home

I The Onsager-Machlup functional is singular in the continuous time
limit.

I Using the Ito-Girsanov leads to unphysical results.

I Using a small (but nonzero) time step in the new formulas leads to
sensible and physical results.

Thank You
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