Singular Nature of the Continuous Time Limit of the Onsager-Machlup Functional

Patrick Malsom and Frank Pinski

Department of Physics, University of Cincinnati

CCP 2014, Boston MA

August 12, 2014

Main point

We have made progress since the abstract was submitted and I have modified the talk to reflect this progress.

Purpose

Explain the singular nature of the continuous-time Onsager-Machlup functional. We use a novel approach to show the unphysical nature of this limit.

Outline

- 1. Brownian Dynamics and the OM Function
- 2. The Continuous-Time formulation: Ito and Girsanov
- 3. New perspective based on a MC method
- 4. Results and Discussion

Starting point

- ▶ Particles moving in a potential, U, with Force $F = -\nabla U$
- In contact with a thermal bath at temperature ε .
- Spatial distribution given by Boltzmann distribution:

 $\exp(-U(x)/\varepsilon)$

Brownian dynamics

 $\blacktriangleright \ \varepsilon$ is temperature

- F(x) is the force $F(x) = -\nabla U(x)$
- ▶ *W* represents the Wiener process (White noise)

Stochastic Differential Equation (SDE)

$$dx = F(x)dt + \sqrt{2\varepsilon} \, dW$$

With a finite time step Δt , $dW \rightarrow \sqrt{\Delta t} \xi_i$, and the SDE becomes

$$x_{i+1} - x_i = F(x_i)dt + \sqrt{2\varepsilon\Delta t}\,\xi_i$$

Quadratic Variation

$$\sum |\Delta x|^2 \rightarrow 2N \ \Delta t \ \varepsilon = 2 \ T \ \varepsilon$$

Onsager-Machlup (OM) functional

$$x_{i+1} - x_i = F(x_i)dt + \sqrt{2\varepsilon\Delta t}\,\xi_i$$

Eliminate the random variables and express the path probability in terms of the path variables themselves.

Path probability for the SDE

$$-\ln P_{OM} = \sum_{i} \frac{1}{2} \xi_{i}^{2}$$
$$= \frac{\Delta t}{2\varepsilon} \sum_{i} \frac{1}{2} \left| \frac{\Delta x}{\Delta t} - F(x_{i}) \right|^{2}$$

Continuous-time OM functional

$$-\ln P_{OM} = \frac{\Delta t}{2\varepsilon} \sum_{i} \frac{1}{2} \left| \frac{\Delta x}{\Delta t} - F(x_i) \right|^2$$

Use Ito's formula and Girsinov's theorem to find the probablity of the path.

Continuous-time limit path probability

$$-\ln P_{lto} = \frac{U(T) - U(0)}{2\varepsilon} + \frac{1}{2\varepsilon} \int_0^T dt \left[\frac{1}{2} \left(\frac{dx}{dt} \right)^2 + G(x_t) \right]$$

where *G* is the *path potential*:

$$G = \frac{1}{2}|F|^2 - \varepsilon \nabla^2 U$$

A New Perspective (HMC)

It is difficult to understand the continuous-time limiting process within Brownian dynamics. Require a method where the finite-time-step errors are known (single step Hybrid Monte Carlo).

Starting parameters: $x_0 v_0 = \sqrt{\varepsilon} \xi_0 h$ (time step)

Leap-Frog integrator (symplectic)

$$x_1 = x_0 + h v_0 + \frac{h^2}{2}F(x_0)$$
$$v_1 = v_0 + \frac{h}{2}F(x_1) + \frac{h}{2}F(x_0)$$

The error in energy $\delta e = \frac{1}{2}v_1^2 - \frac{1}{2}v_0^2 + U(x_1) - U(x_0)$

Note: If $\Delta t = h^2/2$, we recover Brownian dynamics.

Single step probability

$$-\ln P_{MB} = \frac{v_0^2}{2\varepsilon} = \frac{1}{2\varepsilon} \left[\frac{1}{2} v_0^2 + \frac{1}{2} v_1^2 + \Delta U - \delta e \right]$$
$$-\ln P_{MC} = -\ln\{\min[1, \exp(-\delta e/2\varepsilon)]\} = \frac{|\delta e| + \delta e}{2\varepsilon}$$

Probability for the entire path

$$-\ln P_{New} = \frac{\Delta U}{2\varepsilon} + \frac{\Delta t}{2\varepsilon} \sum_{i} \left(\frac{1}{4} \left| \frac{\Delta x}{\Delta t} + F_{i+1} \right|^2 + \frac{1}{4} \left| \frac{\Delta x}{\Delta t} - F_i \right|^2 + \frac{|\delta e|}{\Delta t} \right)$$

• cross terms: $\frac{1}{2}\frac{\Delta x}{\Delta t}(F_{i+1}-F_i) \rightarrow \frac{1}{2}\frac{\Delta x^2}{\Delta t}\frac{\Delta F}{\Delta x} \rightarrow \varepsilon \nabla F$ Except for the first term, this process is symmetric in time: no spurious entropy production.

When $\Delta t \rightarrow 0$, the quadratic variation is satisfied and δe is small.

A small detour: 1D potential

I will use a simple one dimensional potential to illustrate my results.

$$U(x) = \frac{(3x-4)^4(3x+2)^2}{1024}$$

A small detour: 1D potential

I will use a simple one dimensional potential to illustrate my results.

$$U(x) = \frac{(3x-4)^4(3x+2)^2}{1024}$$

Boltzmann probability: entropy drives the particle to spend more time in the broad well.

Ito-Girsanov formalism

The initial path is constructed to be consistent with Boltzmann. Clearly the final path cannot represent physical transitions.

The curvature term is driving the collapse!

New perspective

The **quadratic structure is essential** for recovering the Boltzmann distribution along the path.

Lessons to take home

- The Onsager-Machlup functional is singular in the continuous time limit.
- Using the Ito-Girsanov leads to unphysical results.
- Using a small (but nonzero) time step in the new formulas leads to sensible and physical results.

Thank You

Acknowledgments

This work would not have happened without many conversations with *Andrew Stuart, Robin Ball, Gideon Simpson* and *Hendrik Weber*.

