
A fresh look at the Onsager Machlup functional

Patrick Malsom

Department of Physics, University of Cincinnati

April 16, 2014

1



Outline

1. Introduction to Stochastic Sampling
I Overdamped (Brownian) Dynamics
I Metropolis Hastings Algorithm

2. Onsager Machlup Functional
I A Different Way to Sample: Path Space
I Results

3. A Different Route to the OM Functional
I Hybrid Monte Carlo
I Different Perspective

4. Discussion

2



Starting point

Let us begin this discussion with a damped equation of motion

dp

dτ
= F − γp + Noise

I Brownian regime: dp
dτ → 0

I Scale the time: τ → γmt

dx

dt
= F (x) + Noise

Research Objective

Find an efficient numerical method of sampling transitions in this
Brownian regime.
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Sampling in the overdamped regime

Writing this stochastic differential equation (SDE)

dx = F (x)dt +
√

2ε dW = ε∇ log PBdt +
√

2ε dW

I ε is temperature

I F (x) is the force F (x) = −∇U(x)

I W represents the Wiener process (White noise)

Classical dynamics ⇒ Boltzmann:

PB ∝ exp

(
−U(x)

ε

)
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Discrete sampling

dx = F (x)dt +
√

2ε dW

x1 − x0 = F0 ∆t +
√

2ε∆t ξ0

I ξ is a Gaussian random number (µ = 0 , σ = 1)

I If ε is much smaller than the barrier height, transition events
become exponentially rare.

I The high-frequency modes are dominated by noise.

Quadratic variation sum rule:∑
(xi+1 − xi )

2 = 2εN∆t = 2εT

I Discrete time step size is an important consideration (time
step size too large will lead to incorrect sampling)
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A small detour: 1D Potential

I will use a simple one dimensional potential to illustrate my results.
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I Barrier Height: Ubar = 1

I ε = 0.15

Boltzmann probability: entropy drives the particle to spend more
time in the broad well.
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Difficulties with this simple discrete sampling
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Metropolis-Hastings on a Markov chain

Markov chain → memoryless

Metropolis-Hastings criterion:

π(B → A)

π(A→ B)
exp

(
−∆U(x)

ε

)
> η

Detailed balance drives the solution to a stationary probability

P(A)π(A→ B) = P(B)π(B → A)

I P(A) : equilibrium probability at A

I π(A→ B) : given A, probabilty of going to B
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Adding in the Metropolis Hastings criterion

Brownian
Metropolis
 Hastings

Boltzmann
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Only calculating the interesting parts

The focus of this work is to sample transitions (very rare at low
temperatures). The majority of the sampling resides in the wells.

Can we develop a method that considers the transition path
as an object, and sample these paths directly?

x
+

x
-
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The probability of a path

Use the noise history to express the path probability.

Onsager-Machlup functional

POM ∝
∏
i

exp

(
−
ξ2
i

2

)

Eliminate the random variables and express the path probability in
terms of the path variables themselves.

x1 − x0 − F (x0)∆t =
√

2ε∆t ξ0
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Onsager Machlup

The path probability:

POM ∝ exp

(
−∆t

2ε

∑
i

[
1

2

(
∆x

∆t

)2

+ G

])
The ‘path potential ’:

G =
1

2
|F |2 − ε∇2U
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Onsager Machlup as an action

The OM functional can be thought of as an action in the classical
sense. Sampling this action provides a collection of paths weighted
by the correct thermodynamic factor.

S =
1

2ε

∫ T

0
dt

[
1

2

(
dx

dt

)2

+ G

]

I T = N ∆t is the length of the path

I Short paths may lead to unphysical results

I Long paths should reproduce the Boltzmann distribution

I The integral is undefined (infinite)

We impose boundary conditions at each end.
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The language of paths

POM ∝ exp

(
− 1

2ε

∑ 1

2
v M v

)
exp

(
− 1

2ε

∑[
1

2

(
∆x

∆t

)2

+ G

])

Heff =
1

2
〈v , L v〉+

1

2
〈x , L x〉+ 〈1,G 〉

I L = − d2

dt2 (positive definite)

I v are auxiliary variables

I the ‘mass matrix’ is chosen to be L.

I 〈 · · · 〉 are inner products

Both positions and auxiliary variables are Brownian bridges. In the
absence of interaction we are simply mixing these bridges.
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The effective Hamiltonian

Heff =
1

2
〈v , L v〉+

1

2
〈x , L x〉+ 〈1,G 〉

The equations of motion

∂x

∂τ
=
∂Heff

∂v
= Lv

∂v

∂τ
= −∂Heff

∂x
= −Lx −∇G

Combining these equations yields the (partial) differential equation
of motion

∂2x

∂τ2
= −x − L−1∇G (x)
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Following Hamilton’s equations

∂2x

∂τ2
= −x − L−1∇G (x)

I velocity at half step: wi = vi − h
2 L−1∇Gi

I position at full step:(
xi+1

wi+1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
xi
wi

)
I velocity at full step: vi+1 = wi+1 − h

2 L−1∇Gi+1

This scheme handles the high frequency modes exactly.

When implementing this scheme numerically: θ → h
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Accumulation of error from the integration

Directly calculate the Molecular Dynamics (MD) integration errors
to avoid the subtration of large numbers (the action is possibly
infinite in the continuum limit). This error will accumulate as MD
steps are generated.

∆Heff = 〈1,Gi+1〉 − 〈1,Gi 〉

+
h2

8

(
〈∇Gi+1, L

−1∇Gi+1〉 − 〈∇Gi , L
−1∇Gi 〉

)
− h

2 sin θ

(
〈∇Gi+1, xi+1 − xi 〉 − 〈∇Gi , xi − xi+1〉

)
Note that all of the second term and part of the third term
telescopes which can lead to an oscillation in ∆Heff over many MD
steps.
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Results

Lets use this machinery to sample the double ended path

Potential

21


fatskinny_short.mp4
Media File (video/mp4)



NEW PHYSICS!...

Sampling of this measure is not
consistent with Boltzmann statistics!

Clearly such paths cannot represent physical transitions. For very
long paths, we expect the positions will be visited in a manner
compatible with Boltzmann.

Onsager and Machlup published their work 61 years ago.
Over 35 years ago, Graham pushed the idea of using the OM
functional as an action.
Many people have used this formalism, none have identified this
problem.

What is wrong?
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Restart this analysis with a well understood algorithm

Hybrid Monte-Carlo (HMC) sampling of configurations.

I Choose velocity: v0 =
√
ε ξ0 (Markov chain)

I Leap-Frog integrator (symplectic method)

x1 = x0 + hv0 +
h2

2
F (x0) v1 = v0 + h

(
F (x1) + F (x0)

2

)
I SDE (remember)

x1 = x0 +
√

2ε∆t ξ0 + ∆t F (x0)

I Identify h2 = 2∆t

δe = ∆KE + U(x1)− U(x0)
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Equivalence with the Onsager Machlup functional

Manage errors with Metropolis-Hastings

exp

(
−∆KE −∆U(x)

ε

)
> η

PHMC ∝ exp

(
−∆t

2ε

∑[
1

2

(
∆x

∆t

)2

+
1

2
|F |2 − ε∇2V −

∣∣∣ δe

∆t

∣∣∣ ])

When δe is small, this new functional is equivalent to the OM
functional.

The size of ∆t is small enough that the quadratic variation sum
rule is satisfied. In this regime, δe is also small and thus is of little
consequence.
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The single ended path

x− → x0 → x1 → x2 → x3 · · ·

step xi+1 needs knowledge of step xi only (Markov chain)

E
[
(xi+1 − xi ) (xi − xi−1)

]
= 0

The single ended path moving ‘forward in time’ samples the
Boltzmann distribution
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The double ended path

x− → x0 → x1 → x2 → x3 · · · xN−1 → x+

This constraint adds something important. xi+1 depends on the
constraints as well as xi

E
[
(xi+1 − xi ) (xi − xi−1)

]
6= 0

The Markov property of the chain is lost and all bets are off.
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Concluding remarks

I Overview of a simple stochastic simulation
I Generates the correct distibution
I Inefficient when trying to sample transitions

I Shown what the OM functional is and how it can be used
I Ensemble of transitition paths
I Leads to broken physics!

I Recast the diffusion process in terms of HMC
I Illuminates what went wrong
I ‘Simple’ method that is well understood
I Generates (almost) the same probability
I Correlation destroys the Markov chain

Lesson to take home

Using the Onsager Machlup functional as an effective action to
sample double ended paths leads to unphysical sampling.
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