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The Big Picture - Protein Folding

Original motivation was to study changes in complex
chemical/biological systems.
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The Big Picture - Protein Folding

Proteins are horribly complex structures. The development of novel
sampling methods must be performed on simpler systems.
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A Smaller Picture - Lennard-Jones Clusters

I Move to a cluster of Lennard-Jones (6-12) particles.

I Implementing new path sampling methods led to more
questions than answers.
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The Foundation Crumbles

I Many previous works use the Ito-Girsanov formalism

I Using above formalism, LJ cluster study lead to more
confusion

I Switch to simple one-dimensional external potential and
the bottom dropped out

What I hope to convey in this talk

I Fundamental misunderstanding of how the Ito-Girsanov
expression has been used

I Identified the error

I Developed novel and more accurate formalism
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Outline

1. Sampling Paths in the Continuous-Time Limit
I Brownian Dynamics and Onsager Machlup
I Continuous-Time Path Probability (Ito-Girsanov)
I Path Space Hybrid Monte-Carlo

2. Results and Implications
I Results of 1D Example
I Path Equivalence
I Interpretation of the Ito-Girsanov Probabiliy

3. Lens of the Metropolis Algorithm
I Advantages of Well Understood Method
I OM-like functionals which produce higher-fidelity paths
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Preliminaries

The goal of this work is to create an algorithm to study
conformational changes which are so rare that they are inaccessible
to experiment or direct computation.

Waiting times: long when the energy barrier is large compared to
the available thermal energy.

The starting point (Boltzmann and Newton)

I ε is temperature

I F (x) is the force F (x) = −∇V (x)

I Classical thermodynamics

PB ∝ exp

(
−V (x)

ε

)
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What is a Trajectory?

x- x+

Potential

t

x

x-

x+

Trajectory

I Advance forward in time (t)

I Transitions rarely happen
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What is a Path?
Similar to trajectories, but positions are defined for all time steps.

t

x

I Positions are a function of time (t)
I Double ended: x(0) = x− and x(T ) = x+

I Paths evolve over time τ
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Starting point

Let us begin this discussion with a damped equation of motion

dp

dt ′
= F − γp + Noise

I Brownian regime: dp
dt′ → 0

I Scale the time (t ′ → γmt) : dx
dt = F (x) + Noise

Brownian Stochastic Differential Equation (SDE)

dx = F (x)dt +
√

2ε dWt = ε∇ logPBdt +
√

2ε dWt

Discrete Brownian SDE

xi+1 − xi = F (xi ) ∆t +
√

2 ε∆t ξi
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Discrete sampling

xi+1 − xi = F (xi ) ∆t +
√

2 ε∆t ξi

I ξ is a Gaussian random number (µ = 0 , σ = 1)

I If ε is much smaller than the barrier height, transition events
become exponentially rare.

I The high-frequency modes are dominated by noise.

Quadratic variation:∑
(xi+1 − xi )

2 ≈ 2εN∆t = 2εT

I Discrete time step size is an important consideration (time
step size too large will lead to incorrect sampling)
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The probability of a path

xi+1 − xi = F (xi ) ∆t +
√

2 ε∆t ξi

The Onsager-Machlup Probability

POM ∝
∏

i

exp

(
−
ξ2i
2

)
= exp

(
−
∑

i

ξ2i
2

)

Eliminate the random variables and express the path probability in
terms of the path variables themselves.

Onsager-Machlup Functional

− lnPOM =
∆t

2ε

∑
i

1

2

(
∆xi

∆t
− F (xi )

)2

+ C

12



Continuous-Time Limit

− lnPOM =
∆t

2ε

∑
i

1

2

(
∆xi

∆t
− F (xi )

)2

=
∆t

2ε

∑
i

[
1

2

(
∆xi

∆t

)2

+
1

2
F (xi )

2 − ∆xi

∆t
F (xi )

]

− ∆xi

∆t
F (xi ) =

1

2

(
∆xi

∆t
(Fi+1 − Fi )

)
− 1

2

(
∆xi

∆t
(Fi+1 + Fi )

)
=

1

2

(
(∆xi )

2

∆t

(
Fi+1 − Fi

∆xi

))
− 1

2

(
∆xi

∆t
(Fi+1 + Fi )

)
≈ 1

2

(
2εF ′(xi )

)
−
(

∆xi

∆t
F̄i

)
⇐ Quad. Var.

= − ε∇2V (x)−
(

∆xi

∆t
F̄i

)
︸ ︷︷ ︸

Power
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The continuous-time probability measure (double-ended)

− lnPInformal =
1

2 ε

∫ T

0
dt

[
1

2

(
dx

dt

)2

+
1

2

∣∣∣F (x)
∣∣∣2 − ε∇2V (x)

]

Regularizing this with the free-particle measure (Q)

Ito-Girsanov probability measure

− lnPIG = −lndPInformal

dQ
=

1

2ε

∫ T

0
dt

(
1

2

∣∣∣F (x)
∣∣∣2 − ε∇2V (x)

)
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Sampling Paths with the Thermodynamic Action

Think of this functional as an action in the classical sense.

S =
1

2 ε

∫ T

0
dt

[
1

2

(
dx

dt

)2

+
1

2

∣∣∣F (x)
∣∣∣2 − ε∇2V (x)

]

Impose boundary conditions at each end to form a path of time
T = N ∆t

I Short paths may lead to unphysical results

I Long paths should reproduce the Boltzmann distribution

I Path potential: G (x) = 1
2

∣∣∣F (x)
∣∣∣2 − ε∇2V (x)

Construct an effective Hamiltonian from the Thermodynamic
action

− lnP ∝ S ⇒ Heff ⇒ Λ
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Constructing the effective Hamiltonian Λ

Λ =

∫ T

0
dt

[
1

2

(
dx

dt

)2

+ G (x)

]

1. Integration by parts

2. L = d2/dt2

3. Add in auxiliary variables

4. Choose mass matrix to be M = −L

15
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Constructing the effective Hamiltonian Λ

Λ =

∫ T

0
dt

[
− 1

2
p · L−1 · p − 1

2
x · L · x + G (x)

]

1. Integration by parts

2. L = d2/dt2

3. Add in auxiliary variables

4. Choose mass matrix to be M = −L

Use Hamilton’s equations to find the equation of motion

∂2x

∂τ2
= −x + L−1∇G (x)
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Integrating Hamilton’s Equations Λ

∂2x

∂τ2
= −x + L−1∇G (x)

Splitting allows exact integration of high frequency modes

I First half step of the velocities

I Full step on positions - Exact

I Second half step of the velocities

∂v

∂τ
= L−1∇G (x)

∂2x

∂τ2
= −x ⇐ Harmonic Osc
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Sampling Paths with Hybrid Monte-Carlo

A. Beskos, F. Pinski, J. Sanz-Serna, and A. Stuart, Stochastic Processes and their Applications 121, 2201 (2011)

Λ =

∫ T

0
dt

[
− 1

2
p · L−1 · p − 1

2
x · L · x + G (x)

]
∂2x

∂τ2
= −x + L−1∇G (x)

1. Pick auxiliary variables with known distribution

2. Perform many deterministic integrations

3. Accept/Reject based on Metropolis-Hastings criteria
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2
x · L · x + G (x)

]
∂2x

∂τ2
= −x + L−1∇G (x)

1. Pick auxiliary variables with known distribution

2. Perform many deterministic integrations

3. Accept/Reject based on Metropolis-Hastings criteria

Λ is almost conserved in this procedure.
The effective energy flows between different modes in step 2.

This introduces correlation in the path!
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Part 2:
Results and Implications

Three Perspectives
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One Dimensional Potential

I explore a simple one dimensional potential
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Wide Narrow Potential V(x)

V (x) =
(8− 5x)8(2 + 5x)2

226

I Minima: −2
5 and 8

5

I Barrier Height: Vbar = 1

I ε = 0.25

Boltzmann probability: entropy drives the particle to spend more
time in the broad well.
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Example 1: Path Sampling Results

Use the Path-Space HMC machinery to sample double ended
paths:
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The Garden Path

Time to think about the regularized Ito-Girsanov probability

− lnPIG = −lndPInformal

dQ
=

1

2ε

∫ T

0
dt

(
1

2

∣∣∣F (x)
∣∣∣2 − ε∇2V (x)

)
This expression points to the idea of a Most Probable Path (MPP).

The original Onsager-Machlup probability

− lnPOM ∝
∆t

2ε

∑
i

1

2

(
∆x

∆t
− F (xi )

)2

=
∑

i

ξ2i
2

The path probability is only dependent on the noise history.
All paths of equal length should have equal probability!
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Example 2: Dispel the idea of the MPP

Perform the following experiment:

0. Create a set of N Gaussian random numbers.
I 2 million GRN’s

1. Generate a trajectory using the discrete SDE
I Small time step: ∆t = 0.0005
I Large path time: T = 1000⇒ O(10) transitions

2. Scramble the random numbers

3. Repeat from step 1

The end points of these trajectories are approximately distributed
according to the Boltzmann distribution.

No path is more probable than any other!

I The Most Probable Path is a misidentification

I The density of paths leads to the Boltzmann distribution
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Example Paths of Equal Probability
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Distribution of Endpoints
Generating many trajectories with this one set of random numbers

-0.5 0 0.5 1 1.5 2 2.5
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Histogram of Endpoints

I Histogram shown above uses 472,640 trajectories

I More than 1011,733,474 possible trajectories

I All paths are equally probable
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Example 3: Frequency spectrum of OU process
Recall: Regularization of Ito-Girsanov measure by free measure Q

− lnPIG = −ln dPInformal
dQ

Diffusion with a linear force known as the OU process.

OU Process 1/(2+γ2)

Free Process 1/2

0

1

γ2

frequency ()

Frequency Spectrum

Mixture of the free (Brownian) bridges 6= solution to OU SDE
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What has gone wrong?

The previous arguments provide evidence, but what is the cause?

− lnPIG = −lndPInformal

dQ
=

1

2ε

∫ T

0
dt

(
1

2

∣∣∣F (x)
∣∣∣2 − ε∇2V (x)

)
The noise embodied in Q is white noise → uncorrelated noise

The question now becomes〈
∆x2

∆F

∆x

〉
?
=
〈

∆x2
〉 〈∆F

∆x

〉
By using this to construct the measure, robust sampling methods
will allow correlation to build along the path.
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Messages to take home

I The Ito-Girsanov expression has been misidentified as a path
probability distribution function.

I This should not be surprising because the Ito-Girsanov
expression was a change of measure from the Brownian Bridge
measure and thus only has meaning in this context

I Robust sampling introduces correlation that is incompatible
with the underlying dynamics (SDE)

I A full sampling of the Ito-Girsanov expression produces
unphysical results

27



Part 3:
The Metropolis Lens

Use a well understood
algorithm to illuminate errors

28



Deriving OM-like functionals using Metropolis

Metropolis algorithm was designed to perform the correct
thermodynamic sampling. The source of errors are transparent,
unlike when integrating the Brownian SDE.

One step HMC with Leapfrog is identical to Euler integration of
Brownian SDE (no rejections)

I pick a Gaussian random distributed velocity
√
ε ξ0

I propagate Hamiltonian forward one time step
x1 = x0 + h

√
ε ξ0 + h2

2 F (x0) h =
√

2 ∆t

I repeat

Derive an OM-like functional by solving for ξ20/2
Improve the integrator to generate a more accurate functional
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Errors along the Path (time t)

δe = ∆PE + ∆KE

= V (x1)− V (x0) +
1

2
(v1 − v0)(v1 + v0)

Note: No rejections along the path, have to live with these errors.

Leapfrog:

δe = ∆PE +
1

2
(x1 − x0)

(
F (x1) + F (x0)

)
+

h2

8

(
F (x1)2 − F (x0)2

)
Mid-Point:

δe = ∆PE + (x1 − x0)F (x̄)

Using Mid-Point integration improves the fidelity of the path.
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Sampling paths with Mid-Point

An analogous routine to the Path Space HMC presented earlier is
used

− lnPMP =
∆t

2ε

∑
n

[
1

2

(
∆xn

∆t
− F (x̄n)

)2

− 2ε

∆t
ln

(
1− ∆t

2
F ′(x̄n)

)]

The cross term is handled explicitly in this probability meausre

Heff =
∑

n

1

2
p2n +

1

2

∣∣∣∣xn+1 − xn

∆t

∣∣∣∣2 +
1

2
F (x̄n)2 − 2ε

∆t
ln

(
1− ∆t

2
F ′(x̄n)

)

− ε∇2V (x̄)
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Results of the new HMC algorithm

Use this novel HMC machinery to sample double ended paths
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Conclusions
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I Ito-Girsanov was misidentified as a path probability
distribution functional.

I Improved OM-like functions were derived by looking at
diffusion through the lens of the Metropolis algorithm.
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Messages to take home

I The Ito-Girsanov expression has been misidentified as a path
probability distribution function.

I This should not be surprising because the Ito-Girsanov
expression was a change of measure from the Brownian Bridge
measure and thus only has meaning in this context

I Robust sampling introduces correlation that is incompatible
with the underlying dynamics (SDE)

I A full sampling of the Ito-Girsanov expression produces
unphysical results

I Used Metropolis lens to generate novel OM-like functionals

I This novel method, using the Mid-Point integrator, correctly
handled the entropic effects in the one-dimensional system
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