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We consider diffusion-like paths that are explored by a particle moving via a conservative force while being
in thermal equilibrium with its surroundings. To probe rare transitions, we use the Onsager-Machlup (OM)
functional as a thermodynamic action to form the path probability distribution function for double-ended
paths that are constrained to start and stop at predesignated points after a fixed time. In the continuous-
time limit, the OM functional has been commonly replaced by the Ito-Girsanov change of measure to give
the probability of the path created by the physical dynamics relative to that of a free particle. Here we show
that this continuous-time limit does not, and cannot, generate a thermodynamic ensemble of paths.

PACS numbers: 05.40.-a, 05.10.Gg, 05.40.Jc

I. INTRODUCTION

The aim of this paper is much the same as the 1953
article1 of Onsager and Machlup, namely, to look at
the probability of a succession of states of a sponta-
neously fluctuating thermodynamic system. Their ex-
pression for this (path) probability has become known
as the Onsager-Machlup (OM) functional and has so far
withstood the test of time. One commentary even stated
that the results are ”incapable of improvement either in
form or in their mode of derivation.”2

Here we follow the spirit of the OM work and explore
the continuous-time limit. The OM functional commonly
has been used as a thermodynamic action3 for generat-
ing paths that are constrained at both ends. One way to
proceed is to take the continuous-time limit of the func-
tional; to use Ito calculus and the Girsanov theorem4.
We have used the continuous-time functional to generate
an ensemble of paths and found them to be unphysical.
We show this unphysical nature originates in the form of
the Ito-Girsanov functional. The Ito-Girsanov change of
measure when used as an action is not an indicator of the
relative probability of paths, but instead is an indicator
of how much the free-Brownian solution differs from the
solution for a nonzero force. This last point is illustrated
by using an Ornstein-Uhlenbeck (OU) process5.

II. BROWNIAN DYNAMICS

Throughout this paper, we will consider a particle in
contact with a heat reservoir at a temperature ε. It is
moving under the influence of a potential V(x) with the
force being F (x) = −V′(x). Note that although the equa-
tions are written for the one-dimensional case for clarity,
the formalism can easily be extended to higher dimen-
sions and for a collection of particles.

The equation of motion for Brownian dynamics is given
by the Stochastic Differential Equation (SDE):

dx = F (x) dt+
√

2 ε dWt (1)

where dWt is the standard Wiener process that repre-
sents the (uncorrelated) Gaussian noise. Using a discrete

time step, ∆t, one typically uses the Euler-Maruyama
algorithm6 as an approximate method for propagating
the position as a function of time. In particular,

xi+1 = xi + F (xi) ∆t+
√

2 ε∆t ξi

where ξi is a Gaussian random variate with mean zero
and unit variance. Successive application (N times) of
this equation produces a sequence of positions {xi} which
is called a path. Onsager and Machlup1 used the under-
lying thermal fluctuations to write the Gaussian proba-
bility, Pp ∝ Πi exp(− 1

2ξ
2
i ), of the path in terms of the

path variables themselves, namely,

− lnPp =
∆t

2 ε

N∑
i=1

1

2

( xi+1 − xi
∆t

− F (xi)
)2
. (2)

This equation is commonly called the OM functional. In
the continuous-time limit, using Ito calculus and the Gir-
sanov theorem, the Radon-Nikodym derivative is used to
express the change in the measure7:

dPp

dQp
= exp

(
− 1

2 ε

(
V(xT )− V(x0) +

∫ T

0

dt G(xt)
))

(3)

where T is the duration of the path, Q is the measure
associated with free Brownian motion, and the function
G(x) is defined as G(x) = 1

2F (x) · F (x)− εV′′(x).

III. SOME RESULTS

One of the uses of the OM functional is to incorporate
it into a scheme to sample paths that are constrained at
both ends. The aim is to efficiently generate an ensemble
of paths that include a transition over an energy barrier.
When the barrier is large compared to the typical ther-
mal energy, the transition is a rare event. Such barrier
hopping is consistent with thermodynamics, where the
noise reflects the fluctuating random effects that are in-
dependent of the particle’s position. This contrasts to
what we designate as extremely rare events where an
occurrence would seem to violate thermodynamics, for
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example when all the molecules in a room migrate to one
corner. Here we only consider the former.

Conventional forward time integration is not particu-
larly efficient, especially for small ε, since the hopping
rate is small. Instead we incorporate the Ito-Girsanov
formula into a Monte Carlo method and sample the mea-
sure which, after some initialization, is used to generate
constrained paths that reflect the probability distribu-
tion.

The quandary is that for a very simple one-dimensional
example, the generated paths quickly become unphysi-
cal. Long paths, generated with small time steps, are ex-
pected to be consistent with equilibrium thermodynam-
ics. The positions along the path should be distributed
according to the Boltzmann probability, exp (−V/ε). As
an example, consider the potential

V(x) =
(8− 5x)8 (2 + 5x)2

210 (48 + x8)
(4)

which has two degenerate wells with a barrier of unity
at the origin. A narrow (quadratic) well is on the left
and the wide well is on the right. In addition, the corre-
sponding force is globally Lipschitz on R. At any nonzero
temperature, the particle will spend more time on the
right due to the entropic considerations inherent in the
Boltzmann distribution. We used the Ito-Girsanov for-
mulas with the method developed by Beskos et al8, at
a temperature ε = 0.25, to generate a sequence of these
paths. We use the Heaviside function Θ to define B(s)
as the fraction of the path that is contained in the broad
well, namely,

B(s) =
1

T

∫ T

0

dt Θ(x
(s)
t ) ≈ 1

N

∑
i

Θ(x
(s)
i )

where the sampling index is denoted as s, and the cor-

responding path is {x(s)i }. In Figure 1, we plot B(s) us-
ing the described procedure (solid curve), showing that
the paths quickly become unphysical in that the parti-
cle spends the vast majority of the time in the left, thin
well. Such paths are inconsistent with the equilibrium
thermodynamical distribution. The remainder of this ar-
ticle is to explain the origins of these unphysical results
and to describe which functionals can be used to sample
physical paths with double-ended boundary conditions.

IV. THE MEANING OF THE CHANGE OF MEASURE

Now we examine the relative probability of paths. As
in any continuous distribution, while the probability of
any one path is zero, the relative probability of two paths
is well-defined. In the case of free Brownian motion, for
sufficiently long paths of the same duration, the relative
probability of any two paths is unity. But this is also true
when considering Brownian dynamics with any force. In
all cases, the path probability is due to the Gaussian
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FIG. 1. Displayed is the fraction of the path in the broad
well resulting from sampling the Ito-Girsanov functional (solid
curve) as a function of an arbitrary sampling index, s. The
input path has a value of B(0) ≈ 0.6, has a path length of
T = N ∆t = 150, and a time step along the path of ∆t =
0.005. The paths evolve to an unphysical state, with a very
small fraction in the broad well, differing substantially from
the equilibrium value (dashed line).

noise, Pp ∝ Πi exp(− 1
2ξ

2
i ), where the set {ξi} is indepen-

dent of the force and thus independent of the position
of the particle. The same argument applies to any finite
representation of the path, and thus holds as the size of
the time increment becomes infinitesimally small.

To illustrate the above point, consider the following
thought experiment. For a conservative force that is
globally Lipschitz (such as in the example used above),
consider sampling the Boltzmann distribution using the
Brownian dynamics as expressed by Equation 1. Take the
starting point, x0, to be arbitrary and integrate the SDE
over a fixed time, T, that is long compared to any barrier
hopping time. Using a non-zero but small time step, ∆t,
one uses Nr = T/∆t Gaussian random variates. Keep-
ing the same set of random numbers, but simply scram-
bling the order, redo the integration. This provides Nr!
paths each with identical probabilities. For large enough
T and small enough ∆t, the set of endpoints, x(T ) should
be distributed in a manner that is close to Boltzmann.
Here it is important to recognize that it is not the path
probability that creates the distribution, as all paths are
identically probable. Rather it is the path density that
drives the correct distribution of the endpoints. Similar
results are expected when one generates independent sets
of random numbers instead of using the permutations of
the original set.

The noise is a consequence of the random fluctuations
of the thermal reservoir, and for the SDE given in Equa-
tion 1, the noise is not correlated with the position of the
particle. These considerations point to the inappropri-
ateness of using the Ito-Girsanov change of measure as
the path probability functional. By inspecting Equation
3, we see that it gives different probabilities for different
paths: some paths are more probable than others. This is
accomplished by correlating the noise with the positions
through the function G. There is clearly a flaw in using
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the Ito-Girsanov change of measure in this way. And in
particular, this is the immediate origin of the numerical
results displayed above.

The question is how do we understand our results in
light of the above information? To accomplish this, we
look at the ramifications for an OU process5 with the
force being FOU = −γ x. The Ito-Girsanov change of
measure indicates that the probability distributions of
two diffusions that differ only in their drift term are mu-
tually absolutely continuous. Exact solutions are known
for both the free Brownian motion and the OU process.
For the OU process, the frequency (ν) spectrum is finite
at the origin with a 1/ν tail. The frequency spectrum
of the free particle motion falls off as 1/ν after diverg-
ing at the origin. For a long enough path length, every
realization of the Brownian Bridge has this same spec-
trum. Since linear combinations of such realizations are
still (free) Brownian Bridges, they too have the same
spectrum. Thus each Brownian Bridge and every linear
combination of Brownian Bridges have a frequency spec-
trum that differs from that of an OU process; they are
not solutions to the OU SDE. This holds true for other
forces; in general, free Brownian Bridges are not solu-
tions to the SDE (Equation 1) with nonzero drift. We
conclude that the Ito-Girsanov change of measure is an
indicator of the differences between the solutions of two
SDEs that differ only in their drift term and it is not
related to the probability of paths of one or the other
diffusions.

V. DISCUSSION AND CONCLUSION

The Onsager-Machlup functional is based on Brownian
dynamics and gives a way of understanding the double
ended path sampling problem3. It had been accepted
that in the continuous-time limit, the Onsager-Machlup
functional could be replaced by the Ito-Girsanov change
of measure (Equation 3) as a way of handling the in-
finities inherent in such a limit. We have shown here in
three ways that this is inappropriate. First, direct sam-
pling gives unphysical results. Second, interpreting the
Ito-Girsanov change of measure as a probability distri-
bution favors some paths over others even though paths
of the same duration must have the same probability.
Third, any linear combination of free Brownian paths
cannot be a solution to the OU process nor to diffusions

with more complicated forces. We determined that the
Ito-Girsanov change of measure is simply the indicator of
how inaccurately the free Brownian paths represent solu-
tions to the diffusion process with a nonzero drift. Thus
using the Ito-Girsanov change of measure as a probability
distribution is not thermodynamically correct.

This finding affects a wide body of work. The theory
for entropy production in nonequilibrium thermodynam-
ics is just one of them. As an example see the work of
Speck et al9. For probing the folding of proteins, the re-
cent work of Fujisaki, et al10 suffered from using the un-
physical form of the Onsager-Machlup functional. Other
works11,12 have to be reevaluated in light of this insight.

The form of the OM functional has been explored
before13–15. In this paper, we have added significant in-
sight into the long outstanding issue of the form of the
OM measure in the continuous-time limit.
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