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Abstract

The purpose of this work is to develop improved mathematical methods to understand the
dynamics of a system of atoms as it undergoes a conformational change. When the energy barrier
separating the two stable configurations is large compared to the systems thermal energy, transitions
rarely occur. Many of the standard methods, such as molecular dynamics, fail to sample such rare
transitions efficiently, as the majority of the computational effort is exerted when the system is in
one or the other stable configurations.

In order to create a more efficient approach, I consider a complete sequence of configurations
to define a path, and constrain the path to start and end at predesignated states after a fixed
time. The distribution of these double-ended paths are described by a functional that is based on
Brownian dynamics. In this thesis, I show that a previously-used functional, which was derived
in the continuous-time limit, is inconsistent with the equilibrium Boltzmann distribution. I then
derive a series of accurate expressions for the thermodynamic distribution of double-ended paths.
I also create a novel approach to efficiently sample paths described by these expressions and im-
plement them for a one-dimensional model. As a result, I show how to produce an ensemble of
thermodynamically consistent paths in an efficient manner.
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Animations

5.1 Motion of the LJ13 cluster at zero temperature corresponding to the energy
landscape shown in Figure 5.5. This animation shows the symmetric breath-
ing mode of the outside shell of particles, with the inner particles forming a chain.

• http://patrickmalsom.com/files/thesis/animation-5p1.webm
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5.2 Motion of the LJ14 cluster at zero temperature corresponding to the energy
landscape in Figure 5.6. This transformation is perfectly symmetric between the
initial and final configurations. The inner 4 particles form the chain and the
outer shell symmetrically breathes to allow the chain particles to pass through
the center of the cluster.

• http://patrickmalsom.com/files/thesis/animation-5p2.webm

5.3 Motion of the LJ13 cluster after many loops of the PSHMC algorithm at ε = 0.13,
corresponding to the energy landscape in 5.13. This motion clearly shows the
broken instanton is healed, with the transition occurring very quickly. By ob-
serving, it is clear why this system is difficult to describe for the thermalized case.

• http://patrickmalsom.com/files/thesis/animation-5p3.webm
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5.4 Motion of the LJ14 cluster after many loops of the PSHMC algorithm at ε = 0.13,
corresponding to the energy landscape in 5.15. The symmetric mode is now
destroyed and the transition occurs very quickly in the center region of the path.

• http://patrickmalsom.com/files/thesis/animation-5p4.webm

5.5 Evolution of the energy landscape of the LJ13 as a function of the sampling index.
The blue dots show the energy along the path and the red line serves as a guide to
the eye. The initial landscape is simply the thermalized zero temperature config-
uration shown in Figure 5.9, and the ending configuration is shown in Figure 5.13.

• http://patrickmalsom.com/files/thesis/animation-5p5.webm
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5.6 Evolution of the energy landscape of the LJ14 as a function of the sampling index.
The blue dots show the energy along the path and the red line serves as a guide to
the eye. The initial landscape is simply the thermalized zero temperature configu-
ration shown in Figure 5.10, and the ending configuration is shown in Figure 5.15.

• http://patrickmalsom.com/files/thesis/animation-5p6.webm

5.7 Evolution of the reaction coordinate, ρ, for the LJ13 as a function of the sampling
index. The blue dots show ρ along the path and the red line serves as a guide to
the eye. The reaction coordinate for the initial path is shown in Figure 5.11 and
the ending is shown in Figure 5.17.

• http://patrickmalsom.com/files/thesis/animation-5p7.webm
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5.8 Evolution of the reaction coordinate, ρ, for the LJ14 as a function of the sampling
index. The blue dots show ρ along the path and the red line serves as a guide to
the eye. The reaction coordinate for the initial path is shown in Figure 5.12 and
the ending is shown in Figure 5.18.

• http://patrickmalsom.com/files/thesis/animation-5p8.webm

5.9 The motion of the LJ13 cluster after quenching the fluctuations from the ending
path, whose energy landscape and reaction coordinate is shown in Figures
5.19 and 5.20. The symmetry has now been broken in the outer shell parti-
cles, with a larger gap between some of the particles than its neighboring particles.

• http://patrickmalsom.com/files/thesis/animation-5p9.webm
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6.1 The evolution of the sequence of the paths generated using the PSHMC path
sampling method for the 1D potential from Equation 6.2. The sequence of paths
are seen to quickly fall into the skinny well and never recover. This is the evidence
that initiated the development of the novel HMC path sampling method based on
the Metropolis algorithm.

• http://patrickmalsom.com/files/thesis/animation-6p1.webm

6.2 The evolution of the sequence of the paths generated using the novelHMC path
sampling method for the 1D potential from Equation 6.2. Paths generated using
this method are seen to be consistent with the underlying Boltzmann distribution.

• http://patrickmalsom.com/files/thesis/animation-6p2.webm
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List of Symbols

x position
t time along path (Brownian)

h time along path (Leap-Frog h =
√

2∆t)
τ time between paths (Brownian)

η time between paths (Leap-Frog η =
√

2∆τ)
T Lenth (time) of the path
F (x) Force at position x
V (x) Potential at position x
ρ Reaction coordinate for LJ cluster
Wt Wiener process (time dependent)
ε configurational temperature
ξ Gaussian distributed random number
J Jacobian transformation
J Double Jacobian (symplecticness test)
∆xi = xi+1 − xi positional change between time steps
x̄i = (xi+1 + xi)/2 average position between time steps
v, p velocity, momentum
P Probability
PB Bolzmann probability
G path potential
H Hamiltonian
Λ PSHMC log probability (Effective Hamiltonian)
L Laplacian operator
L−1 Inverse Laplacian operator
M Mass matrix
δΛ change in PSHMC log probability
R center of mass for LJ cluster
B(s) broad well fraction for 1D system
δe forward energy error
I Identity matrix

Notation

A′ Spacial derivative

Ȧ Time derivative

xv





Chapter 1

Introduction

The motivation for this work lies in improving the tools available to study rare events. Such

events, which occur extremely infrequently on average, many times dictate a system’s most relevant

and interesting dynamics. Everyday examples of such events include financial market crashes,

earthquakes, or the failure of a mechanical part. In the natural sciences, the systems of interest

are normally much smaller in scale, for example the study of activated chemical reactions, polymer

dynamics or the configurational change of (relatively large) proteins in biological systems.

As the name “rare event” suggests, the dynamics driving these systems is dominated by the

large chunks of time in which no abnormal events occur. The disparity in time scales is the main

factor why experiment finds the study of these rare events so difficult. It is extremely inefficient

to send a geologist to California in the hope that an earthquake will spontaneously happen in

a short time period of time. In all likelihood, the scientist would give up and find a more time

efficient method of measuring the event. In the case of a folding protein, the folding event from the

random coil to the native folded state occurs on the order of microseconds to milliseconds, while

the fluctuations of the individual atomic properties occur on the femtosecond scale.

In this thesis, I focus on collections of atoms fluctuating according to Brownian (over-damped

Langevin) dynamics, which undergo a conformational change. In many cases, these changes are

blocked by an energy barrier and the event occurs rarely when the thermal energy is small compared

to the barrier height. The question now becomes: How can one efficiently study these events if

they are so infrequently observed? Computer simulation is ideally suited to handle these problems.

The resolution of these very small timescale events can be resolved by a computer easily, but the
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computational effort involved in simulating the slower modes of transformation can be immense.

Nevertheless, the simulation of these rare events is an extremely important problem to consider.

My interests lie in the development of an algorithm which can efficiently sample systems which

exhibit such a rare event, rather than the study of a specific physical system. The familiarity

of molecular systems to a physicist drives my interest to the field of molecular modeling, where

the majority of rare events are often caused by an energy barrier which blocks the conformational

change. These barriers exist in the Free Energy landscape which cannot be probed with straight-

forward techniques, such as gradient descent. The intent of developing an improved sampling

method restricts this study to well-known systems, where solutions can be checked against results

from other methods (or ideally, the exact answer). For this reason the systems of interest here are

theoretical in nature.

The simulation of rare events has been studied extensively[1], and there are a great multitude

of algorithms which aim to efficiently solve the problem. Standard Molecular Dynamics (MD) aims

to use the laws of Newton (or similarly Lagrange and Hamilton) to calculate the forward evolution

of a system under the influence of a set of forces[2]. Hamiltonian systems have been exhaustively

studied[3] in the physics literature and well-behaved numerical methods exist that optimize the

equations of motion, while leaving the conservation laws of Hamilton’s equations intact. This

method of simulation often leads to large collective motions of the system of study, due to the

ballistic nature of MD. These advantages also lead to problems. The conservation laws create

simulations which are restricted to a constant energy surface and the same volume of phase space.

Escaping from an energy basin which is blocked by a barrier which is larger than the total energy

of the system will not only be rare using this method, it will be impossible.

Stochastic simulation is an alternative which uses the underlying fluctuations as a driving pa-

rameter in the equations of motion. In the over-damped case, the motion mimics the Brownian

nature of particles in a viscous medium. The randomly fluctuating nature often leads to a largely

diffusive evolution, which can be extremely slow when a complex movement must be performed.

To help alleviate the problems with these techniques, various path sampling algorithms have

been developed. These methods change the way in which classical sampling is performed by in-

troducing a path, a sequence of atomic positions which is defined to traverse between two long-

lived states which are known experimentally. Examples of these methods include Transition Path
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Sampling[4, 5], Transition Interface Sampling[6] and Forward Flux Sampling[7, 8] as well as more

specialized methods such as the string method[9, 10] and milestoning[11, 12].

In this work, I will focus on an alternative path sampling method which has roots in a hybridized

version of MD and stochastic simulation, called the Path Space Hybrid Monte-Carlo (PSHMC)

method[13]. This method differs from many of the above path sampling methods in that it makes

the path the central focus instead of focusing on theoretical interfaces in a physical problem. I have

worked on devising algorithms for generating ensembles of paths, and thus need to incorporate time

changes in discrete steps, but have also studied the continuous-time limit of the formalism. This

limit is mathematically challenging as infinities are introduced.

1.1 Outline of Thesis

The organization of this document is summarized as follows:

Chapter 2: Forward Integration

In this chapter, I will frame the basic underlying methods which will be utilized in the later

chapters. I give a basic overview of some of the forward sampling methods focusing on stochastic

simulation of a simple system, where a single particle moves diffusively via an externally imposed

one-dimensional force field. These methods create what I will refer to as a trajectory, (which differs

from the path which will be introduced later) which are a sequence of positions that evolve forward

in time. I will then review the Metropolis-Hastings algorithm[14] and discuss the importance of

the algorithm for these sampling methods. By using the 1D potential system, I will show why

the Metropolis test is necessary for finite step size Stochastic simulation. Finally, I introduce a

hybridized version of the basic stochastic sampling, called Hybrid (Hamiltonian) Monte Carlo[15],

which introduces a Hamiltonian flow to the aforementioned Metropolis adjusted stochastic sam-

pling.

Chapter 3: Path Sampling using Onsager-Machlup

This chapter serves as a bridge which joins the ideas of standard forward sampling methods

from Chapter 2 and the path space methods of Chapters 4 and 7. The sampling problem is recast
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using an object referred to as a path. This path differs from a trajectory in that it is defined for all

time steps for a predetermined length of time T and the endpoint is predetermined. This path will

be the fundamental object considered for the remainder of this thesis work.

In order to sample paths, I will employ the use of the Onsager-Machlup (OM) functional[16].

This result utilizes the underlying noise history of the path in order to calculate the probability of

any path using the positions along the path itself.

Chapter 4: Path-Space Hybrid Monte-Carlo

I show how to obtain a continuous-time version of the OM functional, which can be interpreted

as a thermodynamic action[17]. This new probability distribution takes an interesting form which

resembles the probability of a free motion with an added path potential. I use the results of Ito

calculus and the Girsanov theorem[18] to write the new path probability PIG, which is carefully

constructed to avoid the infinities present in this continuous-time formulation. Using the method

proposed in Reference [13], I develop an algorithm which can be used to efficiently sample this

continuous-time path probability, called Path Space Hybrid Monte-Carlo (PSHMC).

Chapter 5: The Lennard-Jones System

A system composed of a cluster of 13 and 14 particles interacting via the Lennard-Jones cluster

is studied using the PSHMC method proposed in Chapter 4. This example examines a low lying

mode of conformational change of the cluster through a free energy barrier[19]. The PSHMC is

shown to generate a sequence of paths which heal the unphysical initial state into a state which

makes a quick transition over the barrier. Unfortunately, this complicated example ends raising

more questions than it answers.

Chapter 6: Results in One Dimension

In order to gain a more thorough understanding of the probability measure from Chapter 4,

a much simpler problem will be studied. The potential used in this chapter possess free energy

basins which are degenerate in energy but disparate in entropy, with one well being thin and the

other broad. The sequence of paths which are generated using the PSHMC method are shown to

be driven to a non-physical regime and do not recover. Furthermore, using restricted sampling
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procedure it is shown that the path probability should be equivalent in all cases at the same

temperature, which is inconsistent with the PSHMC probability measure. With this evidence, it is

clear that the Ito-Girsanov expression can not be interpreted as a path measure.

Chapter 7: Finite Method

In this chapter I will devise an alternative approach to the PSHMC method which uses the

well understood Metropolis algorithm to elucidate any errors made to the numeric integration

of Hamiltons’s equations. This approach is specifically chosen to manage unknown faults in the

derivation of the continuous-time formulation. This new HMC framework is constructed specifically

to match the structure of the PSHMC method and an analog to the path potential, G, from Chapter

4 is derived. Importantly, the sequence of paths generated by this method is found to be consistent

with the underlying (physical) Boltzmann distribution.

Chapter 8: Concluding Remarks

I conclude by presenting a set of arguments which question the validity of using the path-space

probability PIG as a way to sample physical paths. These arguments lie at the foundation of the

interpretation of the Ito-Girsanov form of the path probability. I close with some future directions

on where to continue this research.

1.2 Importance of this Work

The original goal of this work was to study rare transitions in molecular systems. To achieve

this goal I used a method which was thought to be well understood. However, implementing the

method led to surprising revelations.

I performed a thorough analysis of the Ito-Girsanov probability measure using the PSHMC

method proposed by Beskos et. al [13]. Employing this method to sample paths generates sequences

of paths which are unphysical. In order to understand why this method fails, I probed into the

intricate details of the method.

To gain a more thorough understanding of the PSHMC algorithm, I developed an analogous

path sampling method, which avoids the mathematical challenges of PSHMC, by reformulating
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the analysis through the lens of the Metropolis algorithm. This novel framework generates paths

that are consistent with the Boltzmann distribution. Furthermore, because all of the errors are

fully exposed, this new perspective clearly shows limitations of the measure in which the PSHMC

method is based. It is the use of the Ito-Girsanov expression as a path probability distribution

which leads to the unphysical paths, as is discussed in Chapter 8.

While developing this path sampling method, I examined all assumptions made in the derivation.

This illuminated some of the misunderstandings of the path probability. The analysis in Section

6.2 motivates the fact that all paths of equal length, have equal probability. This statement is

incompatible with the Ito-Girsanov measure, which suggests some paths are more probable than

others.

The result of greatest importance in this thesis is not necessarily the novel method of path

sampling presented in detail in Chapter 7. The use of the Ito-Girsanov measure is engrained into the

intuition of many of the experts in the field. This work uncovers a fundamental misunderstanding

of this idea. This unphysical measure is used to calculate many of the results in the literature,

many of which date back 35 years[20, 21]. Fields which build upon these ideas include the theory

of entropy production in non-equilibrium thermodynamics[22], other path sampling methods[23, 1]

and even protein folding simulations[24, 25]. These articles must be reevaluated in light of the

findings of this thesis.
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Chapter 2

Forward Integration

In this chapter, I present a study of the movement of a system of interacting particles which

are spontaneously fluctuating in a thermal bath as the system evolves forward in time. The ther-

mal background interjects random fluctuations into the motion of the particles, as originally seen

by Brown in his work on dust particles floating in water[26], and later described theoretically by

Einstein[27]. One of the main questions to be addressed is how to formally describe this seemingly

random process mathematically. These random fluctuations have been put on a rigorous mathemat-

ical foundation by Wiener, and a calculus developed by Ito is used to describe the time-evolution

of the system[28].

In many physical processes, the most interesting phenomena are observed only when studying

the dynamics of the system. For many molecular systems, the interesting dynamics happen when

a system transitions from one free energy basin to another. Free energy landscapes are often much

too complex fully understand, even for relatively simple systems such as a cluster of Leonard-Jones

particles. The free energy landscape of the systems, considered in this study, possess an energy

barrier which impedes the system from moving freely between the two or more basins. To further

complicate matters, transitions between these two free energy basins become exponentially rare

with decreasing thermal energy, as shown for an example case in Figure 2.1∗.

Historically, the simulation proceeds as an integration of the positions going forward in time.

This can be handled by integrating a Hamiltonian flow (molecular dynamics). It is often conve-

nient to average over several (or many) degrees of freedom, thereby introducing stochastic effects.

∗The details of this simulation will be explained in the last section of this chapter.
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Figure 2.1: Estimated average length of trajectory required to observe a transition cycle
as a function of temperature, ε. This length increases exponentially as the temperature
decreases, leading to exponentially longer waiting times for the observation of a transition.

This generates a trajectory which starts at some initial state, given as an initial condition to the

integrator, and end at some unknown position at a finite time. This process can be devised to

correctly mimic physical nature of the time evolution, which includes very long waiting times when

attempting to make rare transitions.

The goal of the work presented here is to develop an efficient method of sampling is rare

transitions while preserving the physical nature of the stochastic system. This goal necessarily

requires that the systems obey the correct underlying probability distribution. In the classical

regime, this probability is given by the Boltzmann distribution. Thus, a method will be deemed

successful only if the method of simulation produces trajectories which visit states consistent with

the Boltzmann distribution.

In order to frame the following sections of this chapter, I will first need to explain some notation.

• ε→ temperature

• x→ position

• ∆t→ time step

• F (x)→ Force (−dV (x)/dx = −V ′(x))
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the forward evolution of these paths will start with an initial position, x0, and using a constant

time step, generate a proposed move to x1. The proposed move is always accepted when using

Brownian dynamics. However, as explained below, when using the Metropolis algorithm, the state

may be rejected. The details of how to generate the updated position will depend on the specific

method used.

2.1 Brownian Dynamics

Historically, the discussion of stochastic processes began with the problem of understanding the

motion of molecules which exhibit Brownian motion. In this limit, all particles in the system are

assumed to be at their terminal velocities in thermal equilibrium with the surrounding heat bath.

The thermal bath imposes a randomly fluctuating element to the system that gives rise to the

original observations of Brownian motion. This situation can be described using a damped driven

equation of motion

dp

dt̃
= F − γ p+ Noise (2.1)

The Noise is defined using the Wiener process, dWt, which is scaled by the thermal factor set by

the fluctuation-dissipation theorem. In the Brownian (over-damped) regime, the time change in

momentum tends to zero (dp/dt̃ → 0). With the substitution of a new algorithmic time which is

scaled by the mass and the frictional coefficient∗, t̃ = γmt, the Langevin form of this equation of

motion is readily seen

dx = F (xt)dt+
√

2ε dWt (2.2)

2.1.1 Euler-Maruyama method

This equation of motion is defined in the form of a continuous time process. In order to analyze

this problem numerically, the equation of motion will need to be discretized. The Wiener process

requires some special attention when performing this discretization. The sole condition on this

process from mathematical standpoint, is that the variance of the noise must be finite. From a

physical perspective, the noise must not prefer one direction over another, which means the first

∗With the substitution from t̃→ γmt, information about the actual experimental time in the simulation is lost.
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moment (the mean) must be zero. Next, I invoke the central limit theorem, which states that the

probability density of the sum of many (infinite) independent random variables will be close to

Gaussian, and use the Gaussian distributed noise as the discrete form of the Wiener process which

is compatible with the previous mathematical and physical constraints. These random Gaussian

variables, with mean zero and variance unity, are labeled ξi for the ith time step.

xi+1 = xi + F (xi)∆t+
√

2ε∆t ξi (2.3)

This approximate quadrature[29] forms the canonical procedure to generate a Brownian trajectory

which evolves forward in time.

The discussion of the forward-Euler method of integrating the Brownian Stochastic Differential

Equation (SDE) has so far avoided all mention of any errors that are overlooked in the approximate

quadrature. The method of derivation of the SDE is a continuous time process, but the discretiza-

tion will incorrectly sample this process for any finite time step, ∆t. These errors are entirely

hidden from view, with no clear mechanism of estimation. The text books discuss convergence of

the path[30], but little attention is paid to how the errors affect the thermodynamic distribution.

2.1.2 Free Brownian Motion and the Quadratic Variation

Consider a special case of Brownian motion, where the force acting on the particles is zero. This

corresponds to free Brownian motion which is defined entirely by the thermalized Wiener process

dx =
√

2 ε dWt (2.4)

Understandably, this process will lead to a RMS position which grows with time, as there is no

restoring force. While this process does not seem to be of great importance physically, it does give

rise to a very useful expression which I will call the quadratic variation sum rule. Summing the

square of the change in position yields the following expression

N∑
i=1

(xi+1 − xi)2 = 2ε∆t

N∑
i=1

ξ2
i (2.5)
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The Gaussian distributed random numbers, ξi, are defined to have variance equal to unity, which

allows us to rewrite the final sum as
∑N

i=1 ξ
2
i = N . This expression is used to relate the fluctuations

in the position of the particles to the underlying thermal bath and the time step

N∑
i=1

(xi+1 − xi)2 ≈ 2ε∆tN = 2εT (2.6)

If ∆t is small enough, this sum rule will be approximately obeyed even when the force is non-zero.

2.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings Monte-Carlo (MHMC) algorithm[14] is a method for sampling a prob-

ability distribution function without knowing the normalization constant. The probability distribu-

tion function, P
(
{xi}

)
, and the expected value of an operatorO is given by

∫
O
(
{xi}

)
P
(
{xi}

)
Πi dxi.

The Metropolis method can be visualized as a way of moving through the space of variables

X = {xi} in a manner that reflects the underlying distribution P . The power of the Metropo-

lis algorithm lies in its ability to exactly (in the infinite sample limit) sample a multidimensional

probability density, that is within statistical errors.

Suppose the system is currently at a position X, and proposes a move to Y . Define the transition

matrix T (X → Y ) to provide the probability of choosing the proposed state Y given the current

state X. The proposal probability, Q(X → Y ), is the probability that a position Y will be chosen,

given the current state is X. The acceptance probability, α(X → Y ), is the rate at which the move

from X to Y will be accepted, according to some constraint.

The stationary property of the probability distribution requires the flux of particles into a state

be balanced by the outward flux, namely

∑
Y

P (Y )T (Y → X) =
∑
Y

P (X)T (X → Y ). (2.7)

This assures that the overall probability distribution is constant over time. For equilibrium pro-

cesses, the stationarity of microstates is also ensured when all transition processes are equilibrated
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by the reverse process. This is referred to as detailed balance where

P (Y )T (Y → X) = P (X)T (X → Y ) (2.8)

for all states X and Y , which is clearly consistent (term by term) with the stationarity condition.

Detailed balance implies that the Metropolis update leaves the canonical distribution for q

and p invariant. To see this invariance explicitly, let R(X) be the probability of state X being

rejected as a proposal. The probability of the next state being in state Y is P (Y ). Note that

the transformation will happen with probability one unless it is rejected, which can be restated as∑
X T (Y → X) = 1−R(Y ).

There are two cases to be summed to give the probability that the proposed move ends in Y new.

Either the state is already in Y , rejection of the move is required, still in Y or the state is not in

Y , require acceptance to go to Y .

P (Y new) = P (Y )R(Y ) +
∑
X

P (X)T (X → Y )

= P (Y )R(Y ) +
∑
X

P (Y )T (Y → X)

= P (Y )R(Y ) + P (Y )
∑
X

T (Y → X)

= P (Y )R(Y ) + P (Y )(1−R(Y ))

= P (Y )

Thus, the probability of the current and proposed states for moves which satisfy detailed balance

will have equivalent probabilities. Detailed balance is a sufficient condition for a Markov process to

reach a stationary posterior distribution, and will subsequently be required to hold for the MHMC

algorithm.

If the current state is X, what is the transition probability of going to any state which is

consistent with this condition? The transition probability of the system actually making the final

transition from state X to Y is simply the probability of proposing the new Y state, multiplied by
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the probability of accepting the move

T (X → Y ) = Q(X → Y )α(X → Y ) (2.9)

The acceptance rate will now need to be chosen to satisfy the detailed balance criteria in equation

2.8. ∗ The Metropolis choice of

P (X)T (X → Y ) = min(P (X)Q(X → Y ), P (Y )Q(Y → X)) (2.10)

P (Y )T (Y → X) = min(P (Y )Q(Y → X), P (X)Q(X → Y )) (2.11)

are equivalent and thus obviously satisfy the detailed balance equation. Solving for the transition

probability

T (X → Y ) =
1

P (X)
min(P (X)Q(X → Y ), P (Y )Q(Y → X))

= Q(X → Y ) min

(
1,
P (Y )Q(Y → X)

P (X)Q(X → Y )

)

Comparing to equation 2.9 gives the acceptance rate

α(X → Y ) = min

(
1,
P (Y )Q(Y → X)

P (X)Q(X → Y )

)
(2.12)

In the algorithm, the acceptance rate is calculated by comparing α to η, a uniform variate on the

interval (0, 1], and rejecting the move from X to Y if α(X → Y ) < η. Note that the normalization

constant cancels in the definition of α. When the map X → Y is continuous and not symplectic,

Green’s name is added to the algorithm[31], and the Jacobian of the map is folded into α.

α(X → Y ) = J min

(
1,
P (Y )Q(Y → X)

P (X)Q(X → Y )

)
(2.13)

∗ There is also the case that the current state is X and the proposed state is X. The transition probability is
equal to proposing X and accepting X, plus the probability of being in A, proposing state k, and being rejected.

T (X → X) = Q(X → X)α(X → X) +

∫
k

A(X → k)(1− α(X → k)dk

This transition probability is complicated, but will always satisfy detailed balance as P (X)T (X → X) = P (X)T (X →
X), and can thus be ignored for this discussion.

13



For the integration schemes in this section, this Jacobian term is as follows

Jn = h
∂vin
∂xn+1

(
∂vfn
∂xi

)−1

(2.14)

where the symbols are explained below.

2.2.1 Outline of the Metropolis Hastings (Green) Algorithm

In order to proceed generating the sequence of integrated particle positions, I will first define

the time step h and the thermal energy ε. The general algorithm will proceed as follows:

1. Initialize the starting position (x0)

2. Generate a proposed position (x1) using equation 2.16 with the velocity sampled from the

Maxwell-Boltzmann distribution

3. Perform Metropolis-Hastings-Green on the updated position:

• if |J| exp(−δe/ε) > η ⇒ accept proposed state

• else ⇒ reject state and set x1 = x0

4. Save state x1 as the new current position (x0)

5. Repeat from step 2

It is important to note that both accepted and rejected states are saved into memory at step 4.

This will form a sequence of positions which are used to analyze the properties system.

2.3 Integrating Forward

Let us begin the discussion of forward integration with a method that is closely related to the

Euler-Maruyama method. The leapfrog, or velocity-Verlet, method is widely used when performing

molecular dynamics simulations. The integration method proceeds as follows. The half step velocity

is evaluated using the force from the initial position. The positions are then evaluated at the full

step, using the velocities at the half step. Finally, the velocity at the full step is calculated using
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the force at the full step position.

v1/2 = v0 +
h

2
F (x0)

x1 = x0 + h v1/2

v1 = v1/2 +
h

2
F (x1)

Combining these equations yields the leapfrog integration procedure:

x1 = x0 + hv0 +
h2

2
F (x0)

v1 = v0 + h

(
F (x0) + F (x1)

2

)
The reason that this method is important to this discussion becomes clear with the identification

of the relation between the time step h in leapfrog, and ∆t from Brownian dynamics.

h =
√

2 ∆t (2.15)

If one would choose the initial velocity at each step to be a uniform Gaussian random number

scaled by temperature, v0 =
√
ε ξ0, the Euler-Maruyama form of the Brownian SDE (equation 2.3)

is obtained. Thus, leapfrog can be viewed as an alternate perspective on the original Brownian

SDE evaluated with the Euler-Maruyama method.

2.3.1 Generalizing the forward integration

This simple integration framework can be extended in order to apply to Metropolis Hastings

algorithm. To achieve this, I will introduce a weighted force, Fw, which will be defined according

to the specific integration method used. In the example of the Leapfrog scheme, this weighted force

is simply the force evaluated at the initial position. This generalization will allowed the derivation

of a general framework to be used with more complex integration schemes.

Note that some of the integration methods presented in this chapter require the position to

be known at a future time (xi+1) for full evaluation of the weighted force. While this seems like

a counterproductive choice, in later chapters of this thesis I will focus on solving the path space

15



problem, and the implicit nature of the integration will not be an issue. Furthermore, in order to

make the derivation of the path space methods concise, the integration schemes will need to be

simple enough to understand the numerical complexities involved. For these reasons, I will not

present these more sophisticated and well studied higher order methods of integrating Hamiltonian

systems∗.

In order to simplify the notation, I will introduce the average and the difference in the position

between two subsequent time steps as x̄n and ∆xn, respectively.

x̄n =
xn+1 + xn

2
∆xn = xn+1 − xn

The average force between two subsequent positions is defined as

Fw(xn) =
Fw(xn+1, xn) + Fw(xn, xn+1)

2

Beginning with an analogous equation as was seen in section 2.3, I define this foreword evolution

of the past positions the following equation:

xn+1 = xn + vinh+
1

2
h2Fw(xn, xn+1) (2.16)

Recall that reversibility of the Markov chain is a requirement for satisfying detailed balance. The

reversed evolution of the chain must then evolve according to the backward equation, where the

velocities are negated and evaluated at the ending time:

xn = xn+1 − vfnh+
1

2
h2Fw(xn+1, xn) (2.17)

Here, only on time step is considered before being refreshed. It is important to remember that the

velocities are not the normal rate of change of the positions (v 6= dx/dt). Rather, they drawn from

the Maxwell Boltzmann distribution†. This means that the velocities derived from the forward

evolution of positions will only be used for the calculation of the energy change when moving from

the current state to the proposed state. In other words, these velocities will only be used in the

∗Interested readers can refer to Leimkuhler and Reich[3] for a discussion of these higher order methods.
†This corresponds to the random Gaussian variates described in the Brownian SDE (Section 2.1)
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Metropolis Hastings Monte Carlo portion of the algorithm.

vfn =
1

h
(xn+1 − xn +

h2

2
Fw(xn+1, xn)) (2.18)

vin =
1

h
(xn+1 − xn −

h2

2
Fw(xn, xn+1)) (2.19)

The sum and the difference of these two velocities are used in the calculation the change in energy

between initial and final state.

vfn − vin =
h

2
(Fw(xn+1, xn) + Fw(xn, xn+1)) (2.20)

vfn + vin =
h

2
(xn+1 − xn +

h2

4
(Fw(xn+1, xn)− Fw(xn, xn+1))) (2.21)

Error in energy between steps

δe = ∆PE + ∆KE

= U(x1)− U(x0) +
1

2

(
vfn

)2
−
(
vin
)2

= U(x1)− U(x0) +
1

2

(
vfn + vin

)(
vfn − vin

)
= U(x1)− U(x0) +

1

2

(
∆xn +

h2

4
(Fw(xn+1, xn)− Fw(xn, xn+1))

)
Fw(xn)

= U(x1)− U(x0) + ∆xn Fw(xn) +
∆t

4

(
Fw(xn+1, xn)2 − Fw(xn, xn+1)2

)
(2.22)

The overall change in energy while moving between the starting and ending positions is re-

quired for Metropolis Hastings test. It also gives insight into what the Euler-Maruyama method

ignores when integrating the Brownian SDE. While this equation might be complicated for complex

systems, in simple cases these forces can be easily evaluated to find the overall magnitude of the

error.

2.3.2 Leapfrog with MHMC

Let us begin with the simplest case, where the weighted force is simply the force at the initial

position

Fw(xi, xi±1) = F (xi) (2.23)
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This definition of the force corresponds directly to the leapfrog and Euler-Maruyama case in the

previous sections. The velocities are chosen from the Maxwell-Boltzmann distribution, vi =
√
ε ξi.

Equation 2.16 yields the following procedure

xn+1 = xn +
1

2
h2F (xn) +

√
ε ξi h

= xn + F (xn)∆t+
√

2 ε∆t ξi (2.24)

It is important to note that this method is explicit, the updated position can be calculated directly

from information given by the current position.

The absolute value of the Jacobian transformation shown in below is unity, which implies the

integrator is symplectic.

|Jn| =

∣∣∣∣∣∣ ∂v
i
n

∂xn+1

(
∂vfn
∂xn

)−1
∣∣∣∣∣∣ =

∣∣∣∣∣1h
(
−1

h

)−1
∣∣∣∣∣ = 1 (2.25)

Thus, the Metropolis Hastings procedure is sufficient to drive the integration to the stationary

probability, without requiring Green’s correction.

All that is left to compute to complete Metropolis Hastings procedure is the error made between

the current and proposed positions, as stated in equation 2.22.

δe = U(xi+1)− U(xi) + (xi+1 − xi)
(
F (xi+1) + F (xi)

2

)
+

∆t

4

(
F (xi+1)2 − F (xi)

2
)

(2.26)

2.3.3 Mid Point with MHMC

Let us now consider a refinement in the calculation of the weighted force, that continues to be

a symplectic method, but which eliminates a term and the energy error. This weighted force is

evaluated at the average of the current and proposed positions.

Fw(xi, xi+1) = Fw(xi+1, xi) = F

(
xi + xi+1

2

)
(2.27)
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Using this so called midpoint force, I write the forward integration

xn+1 = xn +
1

2
h2F (x̄n) +

√
ε ξi h

= xn + F

(
xn + xn+1

2

)
∆t+

√
2 ε∆t ξi (2.28)

This weighted force will rely on both the current and proposed position, and is thus an implicit

integrator. For a very simple force this equation as a possibility of being inverted to explicitly

solved for the proposed move. When the force is more complicated, the solution to the proposed

position will need to be carefully constructed such that the numerical error is minimized. In the

following analysis, this is implemented via an iterative method, but the numerical error is only

of the machine precision of the underlying variable type (approximately 13 digits using double

precision variables).

This integrator is symplectic, which is again seen by evaluating the Jacobian transformation

(equation 2.25), which has a more complicated form than the leapfrog method

|Jn| =

∣∣∣∣∣∣ ∂v
i
n

∂xn+1

(
∂vfn
∂xn

)−1
∣∣∣∣∣∣ =

∣∣∣∣∣
(

1− ∆t

2
F ′(x̄i)

)(
−1 +

∆t

2
F ′(x̄i)

)−1
∣∣∣∣∣ = 1 (2.29)

In analogy to the leapfrog method, Metropolis-Hastings-Green is not needed and Metropolis Hast-

ings will suffice.

The advantage of the midpoint method is seen when looking at the integration error. The last

part of the equation for the energy error (equation 2.22) is zero, which will turn out to be integral

to the understanding of the path space methods explained in later chapters.

δe = U(xi+1)− U(xi) + (xi+1 − xi)F (x̄i) (2.30)

2.3.4 Simpson’s Method with MHMC

The last, and most sophisticated, integration method which will be discussed in this chapter

is based on Simpson’s method. The method can be thought of as a weighted average between the

midpoint quadrature explained above and the trapezoidal quadrature which will not be considered
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in the following analysis∗. It can also be derived using a quadratic polynomial as an interpolating

function between the two endpoints. The advantage of this method is that the energy error in the

quadrature is of order ∆t2 ∝ h4.

The weighted force for Simpson’s method is defined to be

Fw(xi, xi+1) = Fw(xi+1, xi) = (F (xn) + 4F (x̄n) + F (xn+1))/6 (2.32)

This more complicated expression for the force again leads to an implicit method of integration.

The prescription for the forward integration scheme is as follows

xn+1 = xn +
h2

12
(F (xn) + 4F (x̄n) + F (xn+1)) +

√
ε ξi h

= xn + (F (xn) + 4F (x̄n) + F (xn+1))
∆t

6
+
√

2 ε∆t ξi (2.33)

It is very unlikely that an inverse can be found for this somewhat complicated expression, thus the

only option for solving for the proposed position is by an iterative method.

In contrast to the previous two integration schemes, Simpson’s method breaks the symplectic

nature of the Hamiltonian flow. This can be seen by evaluating Jacobian

|Jn| =

∣∣∣∣∣∣ ∂v
i
n

∂xn+1

(
∂vfn
∂xn

)−1
∣∣∣∣∣∣ =

∣∣∣∣∣
(

1
∆t

6

(
2F ′(x̄n) + F ′(xn+1)

))(
−1

∆t

6

(
2F ′(x̄n) + F ′(xn)

))−1
∣∣∣∣∣

=

∣∣∣∣6−∆t (2F ′(x̄n) + F ′(xn+1))

6−∆t (2F ′(x̄n) + F ′(xn))

∣∣∣∣ (2.34)

This expression in general, cannot be simplified. In order to deal with this non-unitary Jacobian,

must resort to using the Metropolis Hastings Green form of Monte Carlo.

The error incurred from this quadrature is

δe = U(xi+1)− U(xi) + (xi+1 − xi) (F (xn) + 4F (x̄n) + F (xn+1))/6 (2.35)

∗The trapezoidal method follows a similar derivation as shown in this section, but the below weighted force. This
method is not symplectic and has the same order error in time as the midpoint method, so it falls out of favour here.

Fw(xi, xi+1) = (F (xi) + F (xi+1))/2 (2.31)
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Figure 2.2: Plot of the fat-skinny potential V (x)

as stated earlier, the advantage of this method is that the error is the order ∆t2.

2.4 Results of forward-time methods

In the previous sections, I have explained a selection of methods of sampling a system of particles

in the Brownian regime. In this section, will focus on the results obtained when sampling with these

methods. In order to concisely present these results, I have used a very simple system as a test for

the above proposed methods. The system consists of a single particle that resides in an externally

imposed potential which is in thermal equilibrium with the underlying heat bath. The potential

chosen for this analysis will be called the fat-skinny potential, which is shown in Figure 2.2, and

has the following form

V (x) =
(3x− 4)4(3x+ 2)2

1024
(2.36)

This potential is used to define the force used in the forward integration methods.

F (x) = −dV (x)

dx
(2.37)
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Among other effects, I am interested in understanding the role of entropy. This simple potential

was carefully constructed to have degenerate energy basins of zero energy with a barrier of unit

height separating these basins. These energy basins have different widths, the well on the left being

narrow, the well on the right well, wide.

It is instructive to ask the following question: ”What am I expecting to obtain from performing

this analysis on the above potential?” This being a thesis in physics, the ultimate goal of the analysis

is to produce a physical quadrature. If the method is to be considered a physical integration scheme,

the particles should visit positions in these basins according to the Boltzmann distribution. At a

given temperature ε, the probability of the particle residing between positions xa < x < xb is

P (a, b) =

∫ xb
xa

exp(−V (x)/ε)∫∞
−∞ exp(−V (x)/ε)

(2.38)

Remembering the original goal of sampling rare events, the thermal energy of the system will be

set at ε = 0.15, which is much less than the barrier height. At this temperature, the particle

should spend approximately 0.81% of the trajectory in the positive wider well. The accuracy of the

integrator turns out to be an important factor when trying to recover this probability distribution.

I have used the quadrature methods outlined in above, to generate very long trajectories,

which are used to gather statistical information about the positional probability. The simulation

necessarily depends upon the path being extremely long, and therefore, each trajectory possesses

a large number of transitions. As can be seen in figure 2.3, the probability of the particle spending

the correct amount time in each well is strongly dependent on integrator and the step size used.

This time step size is especially important when using lower order methods such as leapfrog. In

fact, even for relatively small time step sizes this integration method fails to sample the exact

Boltzmann distribution. Note that this incorrect sampling is a systematic error which is overlooked

without using a Monte-Carlo method. It is an unavoidable artifact of the approximate quadrature.

The appropriate way to handle this error in sampling is to apply the Metropolis-Hastings al-

gorithm. A specific realization of this correction is shown in figure 2.4. This simulation uses the

leapfrog quadrature with a time step ∆t = 0.035, and bins the positions to form a histogram. The

results of using leapfrog without the Metropolis Hastings correction leads to a grossly incorrect sam-

pling of the distribution. Using the same step size as the leapfrog case, sampling with Metropolis
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Figure 2.3: Probability of the path being in the positive well, for varying time steps, shown
for each of the forward integration methods. This error results directly from the error made
in integration, and can be corrected by applying the Metropolis-Hastings(-Green) algorithm.
Note as step size increases leapfrog overestimates the probability of the path in the narrow
well, while the other two methods underestimate this probability.
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Figure 2.4: The probability of the position of the particle for a very long path (T = 3.5×104)
with ∆t = 0.035 at a temperature ε = 0.15. The Metropolis Hastings adjusted sampling,
shown in red triangles, closely matches the expected Boltzmann probability. The integration
using the leapfrog sampling quadrature drastically underestimates the probability of the
particle in the narrow well.
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Hastings drives (exactly in the long time limit) the sampling to the posterior probability distribu-

tion. Understanding where these errors originate is a very subtle problem, which will turn out to

be a very useful exercise when trying to understand path space methods in later chapters.

On closer inspection of figure 2.4, one can see that the positional probability in the narrow well

is much broader than it should be according to the Boltzmann distribution. A renormalization of

the probability in the left well will still not lead to physical sampling. (I’m trying to convey the

fact that the probability at the center of the narrow well underestimates the probability while just

outside, specifically near x ≈ −0.7, the probability is overestimated. Renormalizing this probability

to match the Boltzmann weight will still yield an unphysical distribution.)

This is not the only test which shows physical properties of this integration. Another test is

to look at the quadratic variation of the particle for specific positions in the potential, as can be

seen in figure 2.5. Observe that the thermal fluctuations corresponding to the correct thermal

background in the simulation is exaggerated when the curvature of the potential is large. This

curvature becomes very large in the narrow well, and is close to zero and the wide well. The

Metropolis sampling attempts to correct for this thermal overestimation. This can be understood

by looking at the rejection rate (shown in figure 2.6) for the Metropolis Hastings sampling. At

positions where there is a large overestimation of the thermal fluctuation for the vanilla leapfrog

sampling, the rejection rate is large. Therefore, the rejections in these regions are responsible for

bringing the thermal fluctuations back in check.

2.5 Hybrid Monte Carlo

An issue often overlooked with SDE sampling is the diffusive nature of the motion defined by

the process. The motion often seems only to be randomly fluctuating in its local neighborhood,

and collective motion of the system is rare. This behaviour is created by the underlying thermal

fluctuations as modeled by the Wiener process, which appears as the random Gaussian variates in

the discrete case, and creates a diffusive path. This randomness leads to a large inefficiency in the

sampling, where most of the computational time is spent simulating the background noise, rather

than sampling the interesting dynamics of the system.

This randomness can also be viewed as the method’s main advantage, as choosing velocities at
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random leads to sampling of the entirety of the available phase space. At very large integration

times, when combined with the Metropolis adjustment, this sampling is very robust and will almost

surely converge to the correct posterior probability distribution. The problem now is how to increase

the sampling efficiency.

One possible way to improve the efficiency of the sampling is to use the Hybrid Monte Carlo

(HMC) method[15] which uses a Hamiltonian flow to greatly increases the amount of phase space

explored compared to the Brownian sampling. The previously discussed methods, like leapfrog

or Metropolis Adjusted Langevin Algorithm (and other simple methods such as random walk

metropolis), inefficiently sample the state space as the overall motion is at best diffusive and at

worst random. The Brownian sampling draws states from the entire distribution of possible states

given for the configurational temperature and thus imposes no restrictions on the possible phase

space accessible. This is a powerful sampling property that stochastic simulation provides. The

diffusive movement however, means that sampling is quite slow to move around the available phase

space. This is in accordance with standard physical intuition, where particles are bouncing around

very sporadically and collective movement is rare.

Roughly, the Brownian method generates moves in a region of phase space that grows propor-
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tional to the square root of the sampling time. On the other hand, since the Hamiltonian flow is

ballistic, the region probed is linear. The Hamiltonian flow conserves energy, possesses a time rever-

sal symmetry and conserves the amount of phase space available at any point (known as Louville’s

Theorem), all of which are shown in Appendix 2.A. These properties lead to an overall collective

motion of the system over short periods of time, which increases the overall configurational change

along the constant energy surface. This can be understood by imagining a classical ballistic system;

once the system is moving in a direction in phase space, (q,p), it will continue around barriers. This

phase space conservation restricts the total phase space available to the stochastic simulation. This

means that the initial conditions on the flow need to be modified in order to sample the entirety of

phase space.

The final part of the sampling is a Metropolis-Hastings test which drives the probability dis-

tribution to stationarity. This algorithm has a fairly strict set of conditions, relying on detailed

balance and the ergodic theorem. The HMC method uses a single step of the Brownian dynamics

followed by many deterministic steps and finally tests the proposals with the Metropolis-Hastings

test. For this analysis it is critical that the stationarity of the probability distribution be preserved.

The detailed balance criteria of Metropolis-Hastings ensures this behaviour, with the acceptance

probability given in equation 2.13. This test is necessary only because of the errors made in the

numerical integration.

2.5.1 Constructing the Markov Chain

This particular analysis is restricted to the classical canonical ensemble.

P(x) =
1

Z
exp

(
−E(x)

ε

)
(2.39)

In particular, I am interested in studying systems which are described by a classical Hamiltonian

which depends on momentum (p) and positions (q). The probability distribution can the be defined

in terms of the Hamiltonian joint distribution as follows:

P(q, p) =
1

Z
exp

(
−H(q, p)

ε

)
(2.40)
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This choice drives the dynamics to move within a shell of constant probability. Defining the

Hamiltonian to be H(p, q) = V (q) + K(p) allows the separation of the spacial from the momenta

components in the probability.

P(q, p) =
1

Z
exp

(
−U(q)

ε

)
exp

(
−K(p)

ε

)
(2.41)

This becomes an important consideration, as it allows the generation of axillary variables in the

path space implementation of the algorithm, to be discussed in chapters 4 and 7. Each of these

terms must have distributions which are consistent with the background temperature bath.

2.5.2 HMC algorithm

There are two steps that transform the initial state (q, p) to the final state (q∗, p∗).

• Step 1: q is unchanged, p is drawn from the Gaussian distribution. This happens for a single

step.

• Step 2: Leapfrog (or another integration scheme) is used to update the positions of (q).

Momentum is negated at the end. This step may repeat many times. The final state after

the leapfrog step(s) is the proposed move (q∗, p∗).

The proposal, (q∗, p∗), is accepted with probability

min {1, exp [−H(q∗, p∗) +H(q, p)]} = min {1, exp [−U(q∗) + U(q)−K(p∗) +K(p)]} (2.42)

If the proposal is accepted, the new positions are updated (q, p) = (q∗, p∗). If rejected, the new

configuration is reset to the configuration before the 2 steps (q, p) = (q, p). Looking at the sampling

from the joint probability distribution, step 1 is responsible for all of the movement of the probability

density of (p, q). The second step is responsible for a large movement in the probability of q but

H(q, p) is nearly constant without step 1.
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2.5.3 Properties of the HMC method

A crucial property of the HMC algorithm is one that affects the probability distribution in the

first step in section 2.5.2. The choice of random momenta, importantly drawn to correspond to the

Boltzmann distribution, will not necessarily leave the probability invariant, but all other steps will.

The numerical integration of the Hamiltonian flow is symplectic and thus conserves phase space.

The rejections in the Metropolis-Hastings step is needed to preserve detailed balance. These two

together ensure that the algorithm samples the target probability distribution.

The question still remains: Why does the sampling improve on the original Brownian dynamics?

As stated previously, introducing a Hamiltonian flow between the Brownian dynamics and the

Metropolis test serves to dramatically increase the movement in phase space. These coordinate

changes have a magnitude comparable to the standard deviation of the motion in the most highly

constrained direction. That is, the changes are constrained to be approximately the square root of

the smallest eigenvalue of the covariance matrix. Configurations which are not highly constrained

benefit the most from the ballistic Hamiltonian flow[32].

The choice of the number of steps for step 2 in section 2.5.2 is optimally determined by examining

how long it takes to sample in the least constrained direction. This will lead to the most highly

independent states for the given configuration in phase space. A number of steps needed the

approximately equal to the square of the ratio of the most highly constrained to least constrained

eigenvalues. This leads to an advantage over the simple random walk that is proportional to this

ratio.
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Appendix 2

2.A Properties of Hamiltonian Dynamics

Hamilton’s equations

q̇ =
∂H

∂p
ṗ = −∂H

∂q
(2.43)

H(q, p) = Uq +K(p) K(p) = pTM−1p/2 (2.44)

Analog of this is uses the vector z = (q, p). Hamiltons equations are then given by

dz

dt
= J∇H(z) J =

 0 I

−I 0


Invariance under time reversal

Here the → symbol is the time reversal.

t→ −t′ q → q′ p = m
dq

dt
→ −mdq′

dt′
= −p′

H = H(q, p) = V (q) +
p2

2m
→ V (q′) +

(p′)2

2m
= H(q′, p′) = H ′ (2.45)

Now look at Hamilton’s equations under this transformation

dq

dt
=
∂H

∂p
→ −dq

′

dt′
=
∂H ′

∂p′
(2.46)

dp

dt
= −∂H

∂q
→ dp′

dt′
= −∂H

′

∂q′
(2.47)
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These equations are invariant under time reversal. This should not be too unfamiliar, as it is

rooted into our basic intuition of mechanics. A ball rolling up a hill can be time and momentum

reversed and it is transformed to a system with identical energy but rolling down the hill.

Conservation

dH

dt
=
∑ ∂H

∂q

dq

dt
+
∂H

∂p

dp

dt
=
∑ ∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0 (2.48)

An important note is that H is only conserved with the MHMC algorithm accepts all proposals,

which will be approximately true for very small step size.

Volume Preservation

Liouville’s Theorem. Divergenceless vector field preserves volume.

∇ · ż =
∂

∂q

dq

dt
+

∂

∂p

dp

dt
=

∂

∂q

∂H

∂p
+

∂

∂p

∂H

∂q
= 0 (2.49)

Symplecticness

This condition defines the symplectic property,

BT
S J
−1BS = J−1 (2.50)
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Chapter 3

Path Sampling using

Onsager-Machlup

In this chapter I turn my attention to an alternative approach to the sampling problem. In the

previous chapter, I reviewed some of the conventional procedures in which to sample the Brownian

SDE, along with a brief analysis of the methods. However, there are disadvantages associated with

using the forward methods, which I will discuss below.

In the previous chapter, the discussion was solely about correctly generating the forward tra-

jectory from which physical properties can be inferred. In these trajectories, the only information

known a priori was the current position. This makes any forward facing trajectory act like taking

a shot in the dark, where you somewhat randomly push particles around and then wait for rare

and interesting events to occur.

The forward methods become especially unfavorable when the temperature is small compared

to the energy barriers present in the system, and the waiting times for the observation of a rare

event can become extremely large. Starting the trajectory in a specified energy basin, one finds

the ending configuration will be approximately distributed according to the posterior probability

distribution only if one waits a long enough time. The only option available is to wait for the

simulation to spontaneously perform the action of interest. Waiting for the system to hop over

a barrier is a frustrating experience. One of the aims of the work presented in this thesis is to

mitigate some of these disadvantages.
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There are two ideas which combine to overcome the frustration of the long waiting times. First, I

will consider an alternative to the standard forward trajectory, and consider paths, where the entire

motion is defined for a predetermined amount of time. I will impose an extra constraint where the

paths are constrained to have predefined starting and ending configurations, thus forming a double-

ended path. This double-endedness rectifies the difficulties with waiting times of transition to a

specific energy basin or configuration, as the ending state is defined by the algorithm itself. I

will then introduce the concept of the Onsager-Machlup probability measure[16], which is used to

determine the probability of a predefined trajectory in time. This probability will be used in later

sections as a probability distribution which can be sampled.

The question for the subsequent chapters will become: How would one use the HMC method

to sample these double-ended paths in a way which remains consistent with thermodynamics.

3.1 Double-Ended Paths

The sampling methods presented for the remainder of this work will utilize an object referred

to as a path. A path is distinctly different from what I have referred to as a trajectory. A trajectory

is a forward looking sequence of positions, where the past and current positions are defined, but

the future times remain unknown. On the other hand, a path is sequence of positions which are

defined for all time steps between the initial time, t=0, in the final time, t=T. These paths do not

have a single set of initial positions as the starting point like a forward trajectory does. Rather,

the initial state is a full path, where all positions between times t=0 and t=T are defined.

The path object is fairly strictly defined in this work. There is a position vector of length N

which is declared for each degree of freedom. Every path in a given simulation has a fixed time

step, ∆t, between each of the N positions. Using this time step and the number of total positions

along the path defines the length of the path, T

T = N ∆t (3.1)

The path is fully defined by the time step ∆t, the path time length T , and the total positions along

the path N .
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x(0)=x-

x(T)=x+

time (t)
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Figure 3.1: A cartoon example of two paths making a transition from an initial position (x−)
to a final position (x+). All positions along both paths are defined at each time interval,
separated by the time step along the path, ∆t. The initial path, shown in red, is used as a
starting point in the generation of the proposed path, shown in blue, which is separated by
the time step between paths, ∆τ .

You may be wondering how introducing this new path object leads to any improvements in

sampling physical systems. The previous chapter outlines how to proceed with sampling by creating

trajectories and these newly introduced path objects act like trajectories of some fixed length and

time. The paths are constrained at the initial time (analogously to forward methods), and are

unconstrained at the ending point. I now impose additional constraint on the path, where the final

position is also pinned to some predetermined point. These boundary conditions will be given the

label x− for the initial path position and x+ for the final path position.

Imposing the constraint that the path starts and ends at specified positions requires each path to

contain a transition from one energy basin to another. This constraint only affects the boundaries,

and thus the center of the path is free to explore the free energy landscape between the two basins.

This pinning alleviates the long waiting times needed to sample rare events.

The objective of the new sampling methods which are introduced in the subsequent chapters is

to generate a sequence of paths, all of which are consistent with the thermodynamics of the system.

The artificial time step between subsequent paths is referred to as ∆τ and is different from the

time step along the path (∆t). ∆τ will turn out to be a tuning parameter which can be adjusted

to obtain efficient sampling, while still maintaining an appropriate level of error. An illustration of

two paths is shown in Figure 3.1.
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3.2 The Onsager-Machlup Functional

The approach for writing the probability of a given path was first derived by Onsager and

Machlup in 1953[16]. In this article, the authors find “the solution to the problem of finding the

probability of any path.” The idea has foundations in idea of the linearity of irreversible processes

that won the first author the Nobel Prize in Chemistry, but adds a stochastic fluctuation in the

form of a random force. Under the assumption of a Markovian process, they use the conditional

PDF for the Ornstein-Uhlenbeck process to put formula for the path probability ”into a particularly

interesting form”. Indeed, this work is at the foundation of path sampling methods which are widely

used in many fields, and the result has been stated as being ”incapable of improvement either in

form or in their mode of derivation.”[33]

The central idea for the use of this result is that, rather than blindly generating succession

states, one can leverage the underlying noise history of a system to calculate the probability of

the pathway. This procedure removes the restraint of only being able to sample trajectories which

evolve forward in time, instead being able to calculate the probability of any path which is defined

for a given time period.

The Onsager Machlup article wrote down the probability of a sequence of randomly fluctuating

positions in a formula analogous to the probability POM

POM =
∏
i

1√
2π

exp

{
−1

2
ξ2
i

}
(3.2)

Using the definition of the Brownian SDE, and its discretized form

dx = F (x)dt+
√

2εdW (3.3)

∆xi = F (xi)∆t+
√

2ε∆t ξi (3.4)

Using the discrete Brownian SDE, one can simply solve for the square of the random Gaussian

variate. Putting this this expression into POM yields an expression for the probability which can
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be solved in terms of the path positions themselves.

POM ∝
∏
i

exp

{
−∆t

2ε

(
1

2

(
∆xi
∆t
− F (xi)

)2
)}

(3.5)

− lnPOM ∝
∆t

2ε

∑
i

1

2

(
∆xi
∆t
− F (xi)

)2

(3.6)

The statement of the path of probability is entirely defined for a given sequence of fluctuations.
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Chapter 4

Path-Space Hybrid Monte-Carlo

The methods presented in Chapter 2 were aimed at creating trajectories which evolve forward

in time. The previous chapter motivated an alternative approach to the forward trajectory, where

sampling is performed on a double-ended path which is defined for all times between t = 0 and

t = T , as well as introduced a method of calculating the probability of such a path using the

Onsager-Machlup functional.

The focus of this chapter is to develop a computational framework which can be used to sample

these double ended paths in the continuous-time limit. In this limit, the Onsager-Machlup function

can be used to create an effective thermodynamic action of the system, which uses the continuous-

time path potential. The standard way to treat this new limit is to use Ito calculus and the Girsanov

theorem[18] to create an alternative path probability[17][20], PIG, which is used as the measure

from which the samples are drawn.

I will explain how to go about sampling this measure by using the HMC algorithm, which in

continuous-time is called the Path-Space Hybrid Monte Carlo method[13] (PSHMC). This method

leverages the joint probability distribution to untangle the kinetic term in the Hamiltonian from

the paths to form auxiliary velocities, which inherit the role of the random Gaussian variates from

the forward methods. The details of the algorithm will then be reviewed, along with the detailed

calculation of the energy drift which is necessary for the Metropolis-Hastings correction. I end the

chapter with a discussion of many of the numerical considerations as well as proposing a framework

for implementing the algorithm on a computer.
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4.1 Thermodynamic Action and the Path Potential G(x)

This section will lay the groundwork for the continuous-time probability measure from which

the path sampling method will be based upon. The discussion begins with the Euler-Maruyama

form of the Brownian SDE from equation 2.3

∆xi
∆t

= F (xi) +

√
2ε

∆t
ξi (4.1)

Solving for the Gaussian random variates squared yields

ξ2
i =

∆t

2ε

(
∆xi
∆t
− Fi

)2

(4.2)

The Onsager-Machlup probability is then written down for the Brownian SDE, which was seen

before in equation 3.6.

POM ∝
∏
i

exp

(
−ξ

2

2

)
= exp

[
∆t

2ε

∑
i

1

2

(
∆xi
∆t
− Fi

)2
]

(4.3)

Lets now take a closer look at the argument of this sum, which has been called the Onsager-Machlup

function[21]

Li =
1

2

(
∆xi
∆t
− Fi

)2

(4.4)

=
1

2

(
∆xi
∆t

)2

+
1

2

∣∣Fi∣∣2 − ∆xi
∆t

Fi (4.5)

In order to cast the equation in a continuous (differential) form, the first and the last term in this

sum must be carefully considered. The ∆x/∆t(dx/dt) term in this sum diverges in the continuous-

time limit due to the fractal nature of the Brownian path. The first term will be handled by using

a change in measure, to be discussed later. The last term in equation 4.5 can be approximated by

employing the quadratic variation rule along the path, (∆xi)
2 ≈ 2ε∆t (see Appendix 4.A), in the
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following way

∆xi
∆t

Fi =
1

2

(
∆xi
∆t

(Fi+1 − Fi)
)
− 1

2

(
∆xi
∆t

(Fi+1 + Fi)

)
(4.6)

=
1

2

(
(∆xi)

2

∆t

Fi+1 − Fi
∆xi

)
−
(

∆xi
∆t

Fi+1 + Fi
2

)
(4.7)

≈ −εdF
dx
− F̄ · dx

dt
(4.8)

Recognise that the last term is the force multiplied by the velocity, which is simply the power, or

when integrated, the difference in the potentials at the boundary in the continuous-time limit. The

new probability measure can then be written (informally) as a continuous-time process

− lnPInformal =
1

2ε

∫ T

0
dt

[
1

2

(
dx

dt

)2

+
1

2

∣∣F (x)
∣∣2 − 1

2

(dx)2

dt

dF

dx
+ F̄

dx

dt

]
(4.9)

=
1

2ε

(
V (x+)− V (x−) +

∫ T

0
dt

[
1

2

(
dx

dt

)2

+
1

2

∣∣F (x)
∣∣2 − ε∇2V (x)

])
(4.10)

=
1

2ε

(
V (x+)− V (x−) +

∫ T

0
dt

[
1

2

(
dx

dt

)2

+G(x)

])
(4.11)

G(x) is the so-called continuous-time path potential, which is defined as

G(x) =
1

2

∣∣∇V (x)
∣∣2 − ε∇2V (x). (4.12)

The second term in G is sometimes referred to as the Jacobian correction. For an explanation see

[34].

The mathematical concern with this integral expression (Equation 4.11) is that it is formally

divergent, due to the fractal nature of the Brownian path. Using the Radon-Nikodym derivative

to express the change in measure relative to the free Brownian case leaves the relative change in

measure as

− lnPIG = − ln
dPInformal

dQp
=

1

2 ε

(
V (x+)− V (x−) +

∫ T

0
dt G(xt)

)
(4.13)

This expression is known as the Ito-Girsanov path probability, and is this measure which is to be

sampled with the PSHMC algorithm.
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4.2 Path Space Hamiltonian

To write down the HMC algorithm in the continuous-time space, one first needs to define an

effective Hamiltonian for the system. The informal probability distribution is used to define the

effective path space Hamiltonian analogous to the joint distribution defined in Equations 2.40 and

2.41. The use of the label Λ → H/(2ε) serves as a reminder this is not a Hamiltonian in the

regular sense, it is a quantity which serves as an effective Hamiltonian. The informal probability

distribution in Equation 4.11 is then written as

PInformal =
1

Z
exp(−Λ̃(x, p)) (4.14)

Again, this is an informal equation because of the fractal nature of the path; the paths are almost

nowhere differentiable.

As the PSHMC method is only interested in relative changes in probability, all constant terms

will be dropped from this expression for Λ̃. The partition function (which can be excluded from

the entire calculation because of the Metropolis-Hastings adjustment) and the evaluation of the

potential energy change between the boundary conditions will be absorbed into this proportionality.

Λ̃ ∝ − lnPInformal −
1

2ε

(
V (x+)− V (x−)

)
(4.15)

∝ 1

2ε

(∫ T

0

1

2

(
dx

dt

)2

dt+

∫ T

0
G(x)dt

)
(4.16)

The full effective Hamiltonian then includes an extra set of variable which form the random

variates, adding a stochastic term into this distribution. The auxiliary variables (that is to say, the

velocities) are generated to be consistent with the temperature. This addition defines Λ, which will

used for sampling with the PSHMC method. An integration by parts is then applied to the first

integral in Equation 4.16 to yield Λ as

Λ(x, p) =
1

2ε

(
1

2

∫ T

0
dt
(
p ·M−1 · p

)
− 1

2

∫ T

0
dt
(
x · d

2

dt2
· x
)

+

∫ T

0
G(x)dt

)
(4.17)

At this point it is convenient to introduce another operator L, the second derivative with respect
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to time

L =
d2

dt2
(4.18)

One of the large advantages of the path sampling is that the mass matrix can be chosen to be −L

(a positive definite operator), as was shown in the work of Beskos et.al. [13]. This transformation

allows the high frequency modes to be treated exactly.

Λ(x, p) =
1

2ε

(
−1

2

∫ T

0
dt
(
p ·L−1 · p

)
− 1

2

∫ T

0
dt
(
x ·L · x

)
+

∫ T

0
G(x)dt

)
(4.19)

There are a number of key points which I would like to address:

1. The momenta chosen in Equation 4.17 obey a known distribution (Gaussian). These auxiliary

variables (that is to say, the velocities) are generated to be consistent with the temperature.

2. The choice of the Mass matrix M → −L means that the high frequencies modes are treated

exactly[13]. This can be understood by realizing that the path potential G→ 0 for the high

frequency oscillations of the path; the path is dominated by the noise of the stochastic process

in this high frequency regime. For this case of the free particle, the Hamiltonian flow (and

thus the high frequency modes) is treated exactly with a particular splitting to be discussed in

4.3. Thus, an analytic solution is obtained for this integration step, which avoids the problem

of dimensionality as ∆t→ 0.

3. The Hamiltonian flow is used to generate large movements in phase space. This flow is

integrated over a large interval to facilitate efficient sampling, thereby de-correlating adjacent

paths in the Markov chain. The algorithm uses a leap-frog integration over τ , using a time

step, η =
√

2 ∆τ , and a large number, NMD, of steps. Note if NMD = 1, then this method

reduces to the Stochastic Partial Differential Equation of Stuart et. al.[35].

4. Errors are controlled by using a Metropolis-Hastings acceptance criterion based on the total

change in the energy over multiple integration steps (∆Λ). The crucial point here is, with-

out resorting to the subtraction of large numbers, that the effective-energy change can be

determined in path space.
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4.3 HMC in Path Space

In the previous two sections I have introduced continuous-time thermodynamic action and,

using the potential G, have defined an effective path space Hamiltonian which can be used to

sample paths. In this section, I will derive a framework of Beskos et. al.[13], which will be used

to sample such paths. Reiterating the most important results from these sections, the effective

path-space Hamiltonian, Λ, and the path potential, G, are

Λ(x, p) =
1

2ε

∫ T

0
dt

(
−1

2

(
p ·L−1 · p

)
− 1

2

(
x ·L · x

)
+G(x)

)
(4.20)

G(x) =
1

2

∣∣∇V (x)
∣∣2 − ε∇2V (x). (4.21)

where L = d2/dt2 is the second derivative operator, x = x(t), and p = p(t).

Hamilton’s Equations

Applying Hamiltons equations to this effective Hamiltonian yields the following two equations

of motion

∂x

∂τ
=
∂Λ

∂p
= −L−1 · p = ẋ (4.22)

∂p

∂τ
= −∂Λ

∂x
= L · x− ~∇G (4.23)

Note that the time scale τ has absorbed all constant prefactors of the effective Hamiltonian in

Equation 4.19. Applying the L operator from the left to Equation 4.22 gives

p = −L · ẋ (4.24)

Replacing p from Equation 4.24 into equation 4.23 and commuting the differentials yields

−L · ∂
2x

∂τ2
= L · x− ~∇G (4.25)
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Finally, application of the L−1 operator from the left gives the final second order coupled differential

equation of motion.

∂2x

∂τ2
= −x+ L−1 · ~∇G (4.26)

Integrating Forward in Path Time τ

These coupled first order equations are numerically integrated using a particular splitting[13]

of the Liouville time evolution operator[36]

v =
∂x

∂τ
(4.27)

∂v

∂τ
= −x+ L−1 · ~∇G (4.28)

First Half Step

w0 = v0 +
η

2
L−1 · ~∇G (4.29)

Full Step

∂x

∂τ
= v (4.30)

∂v

∂τ
= −x (4.31)

Exact integration over a time η gives

x1

w1

 =

 cos η sin η

− sin η cos η


x0

w0

 (4.32)

Crank-Nicholson[37] applied to these coupled differential equations gives

x1 − x0

η
=
w0 + w1

2
and

w1 − w0

η
= −x0 + x1

2
(4.33)
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whose solution is x1

w1

 =

 4−η2
4+η2

4η
4+η2

− 4η
4+η2

4−η2
4+η2


x0

w0

 (4.34)

Thus, cos θ = cos η or cos θ = 4−η2
4+η2

and correspondingly sin θ = sin η or sin θ = 4 η
4+η2

. The full

step then corresponds to mixing Brownian Bridges.

Second Half Step

v1 = w0 +
η

2
L−1 · ~∇G(x1) (4.35)

Combining the Integrations

The above can now be combined to form the full step generated by the leapfrog integration. To

perform this calculation, the initial path (x0), which has the correct thermal fluctuation is required

as input. In order to preserve the boundary conditions, the auxiliary velocities (v0) are required to

have zero velocity at the boundaries, and thus forms a Brownian Bridge. The next bridge path is

given by

x1 = sin θ
η

2
L−1 · ~∇G(x0) + sin θ v0 + cos θ x0 (4.36)

In the above equation, take note of two points. The first is that x0 is a Brownian path and v0 is a

Brownian Bridge. Each has the appropriate thermal fluctuation corresponding to the temperature

(via the quadratic variation sum rule). This calculation is therefore simply a mixture of Brownian

Bridges in the limit when the potential vanishes. This mixture (x1) will have the correct quadratic

variation if both x0 and v0 do, as sin2 θ + cos2 θ = 1 from the rotation in the full step. The second

important note is that the boundary conditions require η
2 sin θ + cos θ = 1. The Crank-Nicholson

prescription for the value of sin θ and cos θ satisfy the boundary conditions, while the exact rotation

only satisfies the condition when the paths begin and end at zero.

Generating the Hamiltonian Flow

Leveraging the reversibility of the Hamiltonian flow (see Appendix 2.A) one creates an equation

which expresses the path x0 in terms of the path x1 and the path velocities v1. In this equation,
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the indices are switched and the momentum (velocity) is reversed as is required by Hamiltonian

dynamics.

x0 = − sin θ
η

2
L−1 · ~∇G(x1)− sin θ v1 + cos θ x1 (4.37)

Performing the leapfrog integration on the path x1 generates the second path in the sequence,

x2. The useful part of this equation is that it may be rewritten in a form which does not involve

any velocities.

x2 = sin θ
η

2
L−1 · ~∇G(x1) + sin θ v1 + cos θ x1 = (x1 − x0) + (2 cos θ − 1)x1 (4.38)

This equation is then repeated many times to perform the required number of Molecular Dynamics

(NMD) steps for simulation parameters, the choice of which will be discussed in Section 4.5.3.

4.4 Calculating the Integration Errors

The Metropolis-Hastings algorithm is employed in order to be sure that the posterior probability

is conserved under the above integration. This requires the calculation of the total drift in Λ between

any two paths. In order to make the computation efficient, it is important that this calculation

avoid requiring knowledge of any of the auxiliary velocities (v0, v1, ...). The manipulations below

show how to simplify this drift into only a function of the positional paths.

In order to shorten the equations, δΛ will be separated into two parts, the first involving only

the position and velocities and the second only involving the path potential G.

δΛ = δΛ(1) + δΛ(2) (4.39)

The first part of the error in Λ is

δΛ(1) = − 1

2 ε

∫ T

0
dt
(1

2
x1 ·L · x1 +

1

2
v1 ·L · v1

)
+

1

2 ε

∫ T

0
dt
(1

2
x0 ·L · x0 +

1

2
v0 ·L · v0

)
(4.40)

By using the definitions of w0 and w1 from the two half steps in the leapfrog integration (Equations
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4.29 and 4.29)

v0 = w0 −
η

2
L−1 · ~∇G(x0) v1 = w1 +

η

2
L−1 · ~∇G(x1)

the drift can be rewritten as

δΛ(1) =− 1

2 ε

∫ T

0
dt
(1

2
x1 ·L · x1 +

1

2
w1 ·L · w1

)
+

1

2 ε

∫ T

0
dt
(1

2
x0 ·L · x0 +

1

2
w0 ·L · w0

)
− 1

2 ε

∫ T

0
dt
(η

2
w1 · ~∇G(x0) +

η

2
w2 · ~∇G(x1)

)
+

1

2 ε

∫ T

0
dt
(η

2
~∇G(x0) ·L−1 · ~∇G(x0) − η

2
~∇G(x1) ·L−1 · ~∇G(x1)

)
(4.41)

The first 2 terms vanish since (x0, w0) and (x1, w1) are related by an unitary transformation (a

rotation).

δΛ(1) =− 1

2 ε

∫ T

0
dt
(η

2
w1 · ~∇G(x0) +

η

2
w2 · ~∇G(x1)

)
+

1

2 ε

∫ T

0
dt
(η

2
~∇G(x0) ·L−1 · ~∇G(x0) − η

2
~∇G(x1) ·L−1 · ~∇G(x1)

) (4.42)

In order to remove the dependence of calculation of the velocities at the half step the following

relations are employed

w0 = −x0 cot θ + x1 csc θ w1 = −x0 csc θ + x1 cot θ (4.43)

This yields the final expression for the drift in Λ(1)

δΛ(1) =
η

4 ε

∫ T

0
dt
(

(x0 cot θ − x1 csc θ) · ~∇G(x0)
)

+
η

4 ε

∫ T

0
dt
(

(x0 csc θ − x1 cot θ) · ~∇G(x1)
)

+
η

4 ε

∫ T

0
dt
(
~∇G(x0) ·L−1 · ~∇G(x0) − ~∇G(x1) ·L−1 · ~∇G(x1)

) (4.44)

For the Crank-Nicholson integrator, cot θ = 4−η2
4 η and correspondingly csc θ = 4+η2

4 η . It is important

to note that the computational effort required to calculate this drift term is significantly reduced
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by performing the above simplification. Each of the cot θ and csc θ terms can simply be calculated,

(each are a constant for the simulation) and then the multiplication of paths are all that is necessary

to calculate the drift.

The second contribution to the drift can simply be calculated along the path in its current form

δΛ(2) = − 1

2 ε

∫ T

0
dt
(
G(x1)−G(x0)

)
(4.45)

Overall Drift in Λ Between Paths x0 and x1

The final form of the drift equation looks rather complicated but calculation is straightforward.

δΛ =
η

4 ε

∫ T

0
dt
(

(x0 cot θ − x1 csc θ) · ~∇G(x0)
)

+
η

4 ε

∫ T

0
dt
(

(x0 csc θ − x1 cot θ) · ~∇G(x1)
)

+
η

4 ε

∫ T

0
dt
(
~∇G(x0) ·L−1 · ~∇G(x0) − ~∇G(x1) ·L−1 · ~∇G(x1)

)
− 1

2 ε

∫ T

0
dt
(
G(x1)−G(x0)

)
(4.46)

4.5 Numerical Considerations

4.5.1 Crank Nicholson

The PSHMC algorithm uses Hamilton’s equations to define two first order Partial Differential

Equations (PDE). In order to guarantee the convergence of these PDEs, I use the Crank-Nicholson

method[37]. This method uses the finite difference method for the time derivatives and the midpoint

method for the spacial derivatives. The advantage of using Crank-Nicholson is that the method is

unconditionally stable for any choice of constants in the PDE. The other advantage of using the

Crank-Nicholson method appears when applying boundary conditions (BCs) to a solution of a PDE

as was discussed directly following Equation 4.36

4.5.2 Implementation of the Algorithm

It is now instructive to give an overview of a possible way to design algorithm in order to

efficiently sample paths using this method. This section will not cover the actual code which was
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used, but does require a language with pointers to operate efficiently. All notation in this section

will follow coding paradigms of the C programming language.

By far the most expensive computational piece of the algorithm is a calculation of the forces (F ),

the path potential (G) and its derivatives (∇G). An appropriate data structure would therefore

have the following vectors all of N = T/∆t length.

Program 1: Data structure used in the implementation of the PSHMC algorithm in dim
dimensional space. A structure of this type is used for each particle in the system.

1 position[dim] \\ stores positions along the path (vector quantity)
2 V \\ potential along the path
3 G \\ path potential along the path
4 gradG[dim] \\ gradient of the path potential (vector quantity)
5 LinverseG[dim] \\ Linverse of the path potential (vector quantity)

The calculation of each of these arrays constitutes the majority of the computational time. Note

that the algorithm used to compute LinverseG is reviewed in Appendix 4.D.

Fortunately, the expense of calculating this structure is counterbalanced by the perfectly par-

allel nature of the force calculations (all but the L−1∇G vector, which is reviewed in Appendix

4.D). Each of the time steps along the path (∆t) are completely independent from their neighbors

when calculating these potentials and fields. The vast majority of the calculation can therefore

be parallelized on distributed memory by splitting the path into N pieces and distributing them

across N nodes.

There are a total of three complete paths required to implement the PSHMC algorithm, each

with the above structure for every particle, which will be called pathOld, pathCurrent, and pathNew.

The first step of the algorithm reads the positions (from disk or from memory) to pathOld.position

and proceeds with calculation of the rest of the path potential calculations to fill the structure in

Program 1. The second step then uses a Brownian Bridge (v0) to calculate the updated path

positions (x1) in Equation 4.36 which are stored in pathCurrent.position followed by filling the

pathCurrent structure. This step is finished with a calculation of the energy drift between paths

x1 and x0 in the effective path Hamiltonian, as stated in Equation 4.46.

At this point the Stochastic part of the algorithm is complete, and the Hamiltonian flow is

calculated a large number of times. The path positions (x2) are calculated according to Equation

4.38, stored to pathNew.positions and the structure is filled. Again, the energy drift is calculated
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according to 4.46.

The important point to note at this point is the pathOld structure is not required for future

calculation. In order to avoid copying large amounts of memory, the structure pointers are rotated

(pathCurrent → pathOld, pathNew → pathCurrent, pathOld → pathNew). The memory space can

now be used to store the next step in the Hamiltonian Flow.

4.5.3 Tuning the PSHMC Method

The HMC algorithm may also be ergodic which means the algorithm will explore all of the

available state space (given enough time). This will fail to hold if NMD ∗ η ≈ 2π as the positions

will return to approximately the same configurations. This occurs because of the exact rotation of

Equation 4.32.

This exact integration helps determine the parameters for optimal sampling rate. In order to

obtain the maximal movement away from the initial state the number of steps of Hamiltonian

dynamics (NMD), and the algorithmic step size (∆τ = η2/2) must be tuned. ∆τ is chosen to give

the largest appropriate acceptance rate to the MHMC step, and is tuned to give an acceptance

rate between 50% and 90%. This time step, η =
√

2 ∆τ , multiplied by the number of Hamiltonian

dynamics steps, NMD, should be on the order of π. This choice reflects the fact that the positions

and auxiliary variables resemble a harmonic oscillator which has a period of 2π and thus a large

move corresponds to an integration over approximately half of the period. However, one should

not use a fixed NMD steps, as this may enhance unphysical resonances[32].

The step size ∆t is chosen so the noise will dominate over the potential term (〈G〉). We have

chosen the noise to be 100 times larger than the potential term.

∆t = −100〈G〉
ε

(4.47)

where the average 〈G〉 is over the Boltzmann distribution. This calculation is shown in detail in

Appendix 4.A
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4.5.4 Consistency Check

A consistency check lies in the relationship between the equilibrium averages of the components

of G. This will provide some information about the (time) length of our paths, i.e. whether our

choice of T is appropriate.

〈|∇V (x)2|〉 = ε 〈∇2V (x)〉 = −2〈G〉. (4.48)

The details of this calculation are shown in Appendix 4.C
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Appendix 4

4.A Quadratic Variation and Path Length

The correct thermal noise along the path is governed by the quadratic variation. From Brownian

dynamics

∆x

∆t
= F +

√
2ε

∆t
ξi (4.49)

On average, the force (F ) is zero and the expectation of ξ2
i = 1.

∑
i

(
∆x

∆t

)2

=
∑
i

2ε

∆t
ξ2
i (4.50)

∑
i

(xi − xi−1)2 = 2 ε T (4.51)

I use this relationship to calculate an estimate for the length of the path, T . The underlying

dynamics should be dominated by the random fluctuations and not the path potential. Separating

the path integral into the fluctuation part and the path potential part, and taking G̃ = max(G)

along the path yields

I1 =

∫
dt
∑
i,α

1

2

(
dx

dt

)2

=
1

2

NDNp

∆t
2 ε T (4.52)

I2 ≈
∫
dt G̃ = G̃T (4.53)

where ND is spacial dimensions and Np is the number of particles. Now for good statistics I impose
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I1 = 100I2, giving an estimate for an appropriate upper limit for ∆t

∆t =
NDNpε

100G̃
(4.54)

4.B Heuristic Derivation of the Path Potential G

It is instructive to show how the path potential can be derived using the Stratonovich form of

stochastic calculus. The form of the path potential, G, is a result of using the Onsager-Machlup

functional. The discrete Brownian equation of motion is given as

∆x

∆t
= F +

√
2ε

∆t
ξi (4.55)

The Stratonovich form of stochastic calculus requires the evaluation at a half step both forward

and backward and average the two

Forward:
ε

2

∑
ξ2
i,→ =

∑
i

∆t

4

[(
∆x

∆t

)2

+ |Fi|2 − 2Fi
xi+1 − xi

∆t

]
(4.56)

Backward:
ε

2

∑
ξ2
i,← =

∑
i

∆t

4

[(
∆x

∆t

)2

+ |Fi+1|2 − 2Fi+1
xi − xi+1

∆t

]
(4.57)

Average:
ε

4

∑(
ξ2
i,→ + ξ2

i,←
)

=
∑
i

∆t

4

[(
∆x

∆t

)2

+ F 2 + F ′
∆x2

∆t

]
(4.58)

With the substitutions: F ′ = −∇2V and ∆x2

∆t = 2ε the path action is found with the path

potential, G,

ε

2

∑(
ξ2
i,→ + ξ2

i,←
)

=
∑

∆t

1

2

(
∂x

∂t

)2

+
1

2
|F |2 − ε∇2V︸ ︷︷ ︸

G

 (4.59)
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4.C Consistency Check

The equilibrium Average of G can be calculated for a system in i dimensions with α particles

G =
∑
i,α

{
1

2

(
∂V

∂xiα

)2

− ε
(
∂2V

∂x2
iα

)}
(4.60)

The expected value is the calculated using the Boltzmann distribution as the probability measure

〈(
∂V

∂xiα

)2
〉

=
1

Z

∫
dxdN

(
∂V

∂xiα

)2

exp

(
−V
ε

)
(4.61)

Using integration by parts

u = − exp

(
−V
ε

)
then du =

dx

ε

∂V

∂xiα
exp

(
−V
ε

)
.

v =
∂V

∂xiα
then dv =

∂2V

∂x2
iα

dx.

〈(
∂V

∂xiα

)2
〉

=
ε

Z

∫
v dt = − ε

Z

∫
u dv = ε

〈
∂2V

∂x2
iα

〉
(4.62)

These expectations then give a value for the equilibrium value of the path potential G as

〈 G 〉 = −1

2

∑
i,α

〈(
∂V

∂xiα

)2
〉

= − ε
2

∑
i,α

〈(
∂2V

∂x2
iα

)〉
(4.63)

This can be thought of as an analog of the Virial theorem in classical dynamics.

4.D Numerical Algorithm for L−1

I present an algorithm to perform Gaussian elimination on a statically defined tridiagonal matrix

and a vector, ~x. The operator L performs the following operation:

L =
d2

dt2
(4.64)

This operator can be described by a tridiagonal matrix with -2 on the main diagonal and 1 on
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the off diagonals (boundary conditions excluded). We want to perform Gaussian elimination on

this matrix with ~x transformed to a new vector ~g that will be used to form the solution to the

Gaussian elimination. ~x and ~g are of length N + 2, and are uniformly spaced in time, with interval

dt, and possess boundary conditions x0 = g0 = x− and xN+1 = gN+1 = x+.



−2 1 0 0 0 0 x1

1 −2 1 0 0 0 x2

0 1 −2
. . . 0 0 x3

0 0
. . .

. . . 1 0 x4

0 0 0 1 −2 1
...

0 0 0 0 1 −2 xN


⇒



1 0 0 0 0 0 g1 dt
3 − x−

0 1 0 0 0 0 g2 dt
2

0 0 1 0 0 0 g3 dt
2

0 0 0
. . . 0 0 g4 dt

2

0 0 0 0 1 0
...

0 0 0 0 0 1 gN dt
2 − x+


(4.65)

The matrix of interest is of size (N x N) and the vector contains N elements (boundaries are

dropped). This problem is easily solved using simple Gaussian elimination and back substitution

but the algorithm is hard to parallelize efficiently as it is an iterative routine (calculation of the

next step relies upon knowing the value of the current step).

Before looking at the discrete version, it is useful to look at the analytic, continuum, version.

4.D.1 Algebraic Solution

Consider the following equation:

d2x

dt2
= g(t) (4.66)

with x(0) = x− and x(T ) = x+. Using the operator L defined above, we can write the matrix

equivalent as

L · x = g or x = L−1 · g (4.67)

where L is the finite representation of the second derivative operator, g(t) is a known function (at

least on a uniform grid) and x(t) is to be determined. The boundary conditions for x are known

(see above). This differential equation is separable and can be solved by integration. Furthermore,

the algorithm can be simplified by changing the order of integration of the double integral.
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Consider the functions:

I0(t) =

∫ t

0
g(w) dw I1(t) =

∫ t

0
w g(w) dw (4.68)

The general form of ~x is given by the following integral (α and β are determined by BCs)

x(t) =

∫ t

0
dv

∫ v

0
g(w)dw + α+ βt (4.69)

=

∫ t

0
dw

∫ v

w
g(w)dv + α+ βt (4.70)

=

∫ t

0
(w − t)g(w)dw + α+ βt (4.71)

= I1(t)− tI0(t) + α+ βt (4.72)

Now matching boundary conditions we have

x(0) = x− = I1(0) + α ⇒ α = x− (4.73)

x(T ) = x+ = I1(T )− TI0(T ) + α+ βT ⇒ β = I0(T ) +
1

T

[
x+ − x− − I1(T )

]
(4.74)

Giving the final x(t) as

x(t) = x− − I1(t) +
t

T

(
I1(T ) + x+ − x−

)
+ t
(
I0(t)− I0(T )

)
(4.75)

Then we can verify that the solution explicitly

x′(t) = −t g(t) +
(
I1(T ) + x+ − x−

) 1

T
+ t g(t) +

(
I0(t)− I0(T )

)
(4.76)

L · x = x′′(t) = g(t) (4.77)

In addition, we see that the boundary conditions are satisfied.
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Program 2: Example code written in the Mathematica programming language which shows
the analytic and discrete algorithm for calculating L−1.

1 (*----------- analytic algorithm ------------*)
2 (* Mathematica code to check analytic solution*)
3 I0[u_]:=Integrate[g[w],{w,0,u}]
4 I1[u_]:=Integrate[w g[w],{w,0,u}]
5 Linvg[u_]:=xm-I1[u]+(I1[U]+xp-xm) (u/U)+(I0[u]-I0[U]) u
6 Linvg=Collect[Linvg[u],{1/U,u}]
7 xm==Linvg/.u->0//Expand//FullSimplify
8 xp==Linvg/.u->U//Expand//FullSimplify
9 g[u]==D[Linvg,{u,2}]//Expand

10

11 (*----------- discrete algorithm ------------*)
12 (* test the implementation of the above method on a finite grid *)
13

14 (* Total number of beads *)
15 Numbeads=8;
16 (*size of vectors and matrices; exludes BCs*)
17 Num=Numbeads-2;
18 (* generate a general vector g with the step size squared included *)
19 g=dtˆ2*Table[ToExpression["g"<>ToString[i]],{i,1,Num}];
20 (* initialize vectors for i0 and i1 *)
21 i0=Table[0,{i,1,Num}];
22 i1=Table[0,{i,1,Num}];
23 (*set initial conditions *)
24 i0[[1]]=i1[[1]]=g[[1]];
25 (* calculate i0 and i1 up to step u for every u *)
26 Do[
27 i0[[n]]=i0[[n-1]]+g[[n]];
28 i1[[n]]=i1[[n-1]]+n g[[n]];
29 ,{n,2,Num}]
30 (*evaluation of the BCs*)
31 lasti=i0[[Num]]-(xp-xm+i1[[Num]])/(Num+1);
32 (*form solution vector*)
33 x=Table[xm+n (i0[[n]]-lasti)-i1[[n]],{n,1,Num}]//Expand//Simplify;
34 (* add the BCs to the beginning and end of the solution vector *)
35 AppendTo[x,xp];PrependTo[x,xm];
36 (* print the solution *)
37 x//Expand//MatrixForm
38

39 (*Check that L x=g*)
40

41 Table[x[[i+1]]-2 x[[i]]+x[[i-1]]==g[[i-1]],{i,2,Numbeads-1}]//Expand//Simplify

4.D.2 Parallelization of L−1 on Distributed Memory

Nnodes = Total number of compute nodes. u− is the beginning bead on the node. u+ is the

ending bead on the node.

The integrals I0 and I1 can be calculated on a distributed memory system with a bit of care.

The integral Jαj needs to be calculated on each node (named α) with a subset of sequential beads.
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Jαj (u) =

∫ u

u−
wjg(w)dw (4.78)

This result is then broadcast to all of the other nodes and a barrier is placed on the computation

until the broadcast is complete. Upon completion of the broadcast each node can calculate the

integral Iαj and lasti

Iαj (u) =
∑
β<α

Jβj (u+) + Jαj (u) (4.79)

lasti =

∑Nnodes
α=1 Jα0 (u+)− (x+ − x− +

∑Nnodes
α=1 Jα1 (u+)

Nbeads − 1
(4.80)

The solution on the αth node is then

x[n_] = Table[xm+n(I0[[n]] - lasti)-I_i[[n]],{n,1,Nbead-2}]

The only part of the calculation that must be shared to all nodes is the end point of the

integration of Jαj for each node. The endpoints can be broadcast across all nodes and then lasti

can be calculated. There are two separate sums that must be computed from the shared Js. All

nodes must calculate the sum of J0 and J1 from all other nodes. This will give you I0(U) and I1(U)

that is needed for the calculation of lasti.
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Chapter 5

The Lennard-Jones System

The previous chapters, I have introduced the concept of a path and developed a possible way

to sample double-ended paths for a continuous-time process. In this chapter, I present results

from using this algorithm to sample paths in systems which possess an interesting conformational

transition. These systems are purely theoretical in nature and were chosen to test the path sampling

method, rather than to gain new physical insight of specific physical properties of the systems

themselves.

A similar Hybrid Monte Carlo (HMC) algorithm has been implemented in a study of polymers[38]

where H was the actual Hamiltonian and where the sums in H are finite (corresponding to the

number of atoms in the polymer). Similarly, one can sample paths from the corresponding measure:

Ppath ∝ exp [−(H/2ε)].

The system I will consider is a cluster of particles in three dimensions governed by the Lennard-

Jones (LJ) potential. This is a historically well studied problem[39], but the relatively large number

of degrees of freedom obscures all easily accessible physical properties of the system from being

analyzed. In order to better understand the dynamics produced by the continuous-time HMC path

sampling method, a simpler system is required. In a later chapter, I will present the study of a

single particle fluctuating at thermal equilibrium in an externally imposed potential to answer some

of the questions raised by this LJ study.

The interested reader might wonder why the discussion these physical systems proceeds by

starting with the much more complicated (many degrees of freedom) Leonard Jones clusters, and

then returns to the much simpler external potential in one dimension. The explanation of this

58



choice is somewhat historical, but will also be used to gain insight into the complex nature of

sampling algorithms. Often, the dynamics of the systems studied is so complex that the underlying

properties of the method are washed out by the complexity of the system. This is the case when

applying the Path Space Hybrid Monte-Carlo (PSHMC) method to the Lennard Jones system as

will be shown in this chapter.

5.1 Clusters of Lennard-Jones Particles

The original motivation for this work was to develop a novel sampling method which can be used

to understand the protein folding problem. These systems exhibit collective motions of extremely

large numbers of atoms, have relatively small transition rates, and exceedingly complex free energy

landscapes. Sampling with a diffusive algorithm like the forward SDE or deterministic molecular

dynamics is inefficient at sampling these complex systems. It is thus very beneficial to use any

known constraints to guide the sampling. In many complex chemical and biological systems, it

is possible to experimentally determine the initial system state (the amino acid sequence for the

protein folding problem) and the question becomes how this special initial state transforms to a

structure with a higher level function. In many cases, the final state of the folded protein is also long

lived and can be experimentally measured. This provides two boundary conditions which, when

applied to the continuous-time HMC method from chapter 4, can be used to force the transition

to occur in some predefined time period, increasing the efficiency of identifying the interesting

dynamics.

With this motivation in mind, one requires a problem that has a somewhat rigid set of conditions

as a test for the proposed continuous-time HMC sampling method. First of all, in order for the

results of this analysis to be meaningful to the physics community, the chosen system must be well

studied and documented in the literature. In order to test code base, I required the system reside

in a three dimensional space, yet it must also be simple enough for use as a testing system. Finally,

as stated previously, the system must have predefined beginning and ending configurational states.

The system which I have chosen which satisfies all these requirements uses the well-known

Lennard-Jones (LJ) potential as a self interaction potential between a cluster of particles. This
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Figure 5.1: The Lennard-Jones potential in the radial direction. The 1/r12 term in this
potential produces a very large repulsive barrier for positions r < σ, which leads to LJ
particles having an extremely hard core. At long distances, the potential tends to zero for
any choice of parameters σ and V0

system is described with the following pairwise potential

U(r) =

N∑
i<j

VLJ(rij) (5.1)

where each degree of freedom follows the radial force defined from the potential

VLJ(rij) = 4V0

[(
σ

rij

)12

−
(
σ

rij

)6
]

(5.2)

The ground state configurations of these LJ clusters were studied by Hoare and Pal [39] who

found the optimal configurations for a given number of particles, N, in the cluster. For a small

number of particles, these configurations are easily understood (N = 3 → equilateral triangle,

N = 4→ tetrahedron) but for larger clusters, the ground state configurations become much more

complicated. These previous studies have identified a set of particle numbers which exhibit very

efficient packing geometry, which have been given the title of a magic number of particles. For

these magic cluster numbers, the difference in average energy per particle between a cluster with

a magic number particles and a cluster with one less (or more) particle is significantly larger than
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the same difference for non-magic cluster numbers. This is a somewhat analogous statement to

the magic numbers having a minima of chemical potential. A medium-size cluster with a magic

number is N=13, and the geometry for the ground state is icosahedral (see Figure 5.2). For N=14,

the ground state geometry is the same icosahedral structure with an added article residing on the

surface. I will subsequently call these clusters LJ13 and LJ14, respectively.

5.2 Transformation at Zero Temperature

I investigate a previously discovered low lying mode[19] in which the surface atom penetrates the

cluster and pushes an internal atom out to the surface. The LJ13 cluster has previously been studied

by Barry et al [19] using molecular dynamics techniques. This study discovered an interesting mode

of transformation where single atom becomes excluded from the icosahedral structure to reside on

the surface and a vacancy is concurrently created on the opposite side of the cluster. This collective

motion occurs when the motion of 3 central atoms, linked together to form a chain of three particles

(Nin) form the center of the cluster, coherently push through to the other side, leaving a vacancy

and a surface atom on opposite ends. The surrounding shell of particles (Nout) move only a small

amount between the initial (icosahedral) structure and the final excited configuration. Note the

extra atom is at the bottom of the cluster initially, moves into the cluster and pushes the chain up

through the cluster. This collective motion is shown graphically, where I have removed the thermal

fluctuations for clarity, in figure 5.3. I will use these starting and ending configurations as boundary

Figure 5.2: Construction of the ground state configuration of 13 Lennard Jones particles
(LJ13. The construction proceeds on successive levels starting with the leftmost panel of a
single particle which is surrounded by five close-packed LJ particles in a plane. This structure
then repeats itself, with the fourth level being a copy of the second level rotated by 2π/5,
and is finally topped off the single particle on the fifth level. The radial distance between the
particles is determined by the parameters (l and ε) in the Lennard Jones potential (equation
5.1) such that the particles reside the minimum of V (r).
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Figure 5.3: 3-Dimensional representation of the zero-temperature LJ13 cluster transforma-
tion. Five distinct states are observed in this transformation, from the global minimum
energy configuration (left panel) to the excited minima with a surface excitation (right
panel). The outer shell particles are shown in cyan and the inner chain particles are shown
in blue. The bottom figures show the identical transformation with the outer shell parti-
cles transparent to better illustrate the chain movement. An animation of this motion is
included in the supplementary material (Animation 5.1).

Figure 5.4: 3-Dimensional representation of the zero-temperature LJ14 cluster transforma-
tion. This transformation is similar to the transformation shown in Figure 5.3, with five
states present, but is a very symmetric motion which starts and ends with identical (albiet
rotated) configurations. The transformation proceeds with the bottom chain particle ex-
cluded from the LJ13 structure and ends with the top chain particle being excluded. An
animation of this motion is included in the supplementary material (Animation 5.2).

conditions in the path sampling algorightm.

The zero-temperature path is obtained by minimizing the Large Deviation result, but this is
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Zero-Temperature LJ13 Energy Landscape

Figure 5.5: Energy of the zero-temperature transition pathway of the LJ13 cluster from
the ground state structure (icosahedron) at t = 0 to the configuration with a vacancy and
surface particle at t = T . The path shows five distinct configurations, each of which exist
for a roughly equal length of time, at each of the critical points in this energy landscape.
Note that the initial and final boundary configurations are of different energy.

unphysical. It is the thermal energy that propels the conformation change, but at zero temperature

such energy is nonexistent. It is important to note for these zero-temperature configurations, all

critical points of the conformational change have approximately equal path length (time). This can

be understood realizing is equally hard to fall off of a peak in the potential as it is to fall up from

the trough in the absence of all thermal fluctuation∗.

5.2.1 Energy Landscape of the LJ clusters

The potential energy of the sequence of configurations along the path time, t, is the most

obvious way to characterize the state of the cluster. This calculation can be performed for each

configuration by calculating the pairwise potential given in equation 5.1. This energy along the

path will then be used as a physical measure of the state of that transition. Both σ and V0 have

been set to unity and the ground state (icosahedral) configurational energy set to zero, for ease of

calculation.

Both LJ13 and LJ14 exhibit 5 distinct intermediate stages that these critical points for the zero-

∗In fact, it is infinitely hard in either case.
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Zero-Temperature LJ14 Energy Landscape

Figure 5.6: Energy of the zero-temperature transition pathway of the LJ14 cluster. The
initial and final state are identical geometries, as are the two intermediate states, and are
thus degenerate. Analogously to the LJ13 cluster, this path shows five distinct configurations
at all critical points which exist for a roughly equal length of time.

temperature systems (refer to Figures 5.5 and 5.6). LJ13 has no energy degeneracy for any of these

zero-temperature states as the transformation lacks symmetry between the forward and backward

motion. LJ14 has two doubly degenerate energy states which arise from the highly symmetric

transition and, importantly for the following analysis, the boundary conditions themselves are

degenerate. This degeneracy will permit a further insight into what information can be gained

from the continuous-time HMC transition rate. If the transition rate is accessible via the method,

for this symmetric system, the transition should occur at half of the path length, as long as the

path is long enough.

5.2.2 Reaction Coordinate for the LJ clusters

The complex movements of the transition of these LJ clusters in positional space is often not very

illuminating. The movements of the particles are dominated by the seemingly random fluctuations

while the interesting parts of the path remain hidden from view. For this reason it is convenient

to define a single quantity that maps configuration along the path to the state of progression of

the transition. This reaction coordinate, labeled ρ, varies from ρ− at the start of the path to ρ+

at the end of the path. Values between ρ− and ρ+ then provide a measure of the evolution of the
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Figure 5.7: The reaction coordinate of the zero-temperature LJ13 transition pathway which
is used to quantify the progression of the transition between the two boundary configura-
tions. Larger values of ρ correspond to a larger progression through the transition pathway.
There is a corresponding plateau for each of the critical points seen in the energy landscape
in Figure 5.5.

transition. This reaction coordinate is defined to be

ρ =
(
~Rin − ~Rout

)
· n̂ (5.3)

where ~Rin − ~Rout is the difference in the center of mass of the outside shell of LJ particles (10

atoms, excluding the chain particles) to the center of mass of the chain (4 particles for LJ14 and

3 for LJ13). The unit vector n̂ is the eigenvector corresponding to the minimum eigenvalue of the

moment of inertia tensor of the chain of particles. This vector roughly points in the direction of the

movement of the chain as it traverses through the shell. Figures 5.7 and 5.8 illustrate the behavior

of ρ for the zero-temperature LJ13 and LJ14 clusters respectively. The coordinate shows distinct

plateaus for each of the critical points of the zero-temperature configuration.

5.3 Path Evolution of the Thermally Excited LJ Clusters

Let us now take a step back and review what was achieved in the previous sections. In the

previous section, I have developed the framework for a cluster of Lennard-Jones particles which
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Figure 5.8: The reaction coordinate of the zero-temperature LJ14 transition pathway which
uniquely identifies the cluster configurations even for states which are degenerate in energy.
Larger values of ρ correspond to a larger progression through the transition pathway. Note
the value of ρ is symmetric and varies between −1 and +1 for this cluster.

forms a three-dimensional system in the absence of thermal excitation. One of the manifestations

of the nonphysical nature of the zero-temperature configurations is that the cluster spends the same

order of time at each of the critical points, even at a saddle point. At finite temperature, as the path

passes through the largest energy barrier, a physical path should quickly make the transition to the

next valley; passing quickly through the saddle point. This is the standard instanton picture. The

zero-temperature configurations are clearly nonphysical in the sense that the transition instanton

is broken. The question now becomes how to proceed in performing the path sampling when the

system has reached thermal equilibrium with its surrounding heat bath?

I’ve used the method described in chapter 4 to generate a sequence of paths, using the thermal-

ized zero-temperature path above as a starting point. I have taken the smooth zero-temperature

configuration and added noise to form a path which exhibits thermal fluctuations at a temperature

of ε = 0.13. The number of degrees of freedom is equal to special dimension (d = 3) multiplied

by the number of particles in the cluster (N = 13 for LJ13 and N = 14 for LJ14). The total time

of each of the paths is T = 10 and the time step along the path between each configuration is

∆t = 0.0001, which specifies each path to have 100, 001 configurations. The number of molecular

dynamics steps per MHMC loop was chosen to be NMD = 3000, in accordance with the guidelines
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in section 4.5.3.

Using this physically naive starting path serves as a relevant real-world test of the dynamics

of the PSHMC method. This path is very easily generated, but obviously non-physical because

of the large amount of time spent in the high energy transition state. For more complex systems

(folding of a protein), these physically naive guesses are often all that is available, so it is required

that the sampling handle this input path correctly. If the sampling method is robust, the sequence

of paths generated will evolve to the point where the instanton has healed. The convergence

of the nonphysical starting path to a physical path is of critical importance because computer

experimenters, in general, study problems which have unknown free energy barriers. This means

choosing a realistic starting path is quite difficult. By starting the sampling with this naive guess,

I have attempted to include such a difficulty.

As can be seen in Figures 5.9 and 5.10, adding noise to the smooth path completely washes

out two of the three intermediate states from either of the zero-temperature paths. The result is a

path which is described correctly by the Onsager-Machlup functional in Equation 3.6, but spends

the vast majority of its time sitting on top of the high-energy barrier.

A closer examination of the reaction coordinate (equation 5.3) reveals more information about

this intermediate high-energy state than can be inferred from the energy landscape alone. For

the case of LJ13, Figure 5.11 clearly shows the preferred configuration of this thermalized path

is a combination of the second and third plateau from the zero-temperature path (Figure 5.8).

The highest energy barrier of the zero-temperature reaction coordinate (ρ ≈ 0.7) is only achieved

once the cluster begins falling into the ending energy basin. This state is entropically stabilized.

The reaction coordinate for the LJ14 cluster is similarly illuminating (Figure 5.12), but displays

distinctly different behavior. The highly symmetric nature of the LJ14 structure causes the cluster

to oscillate between any of the intermediate high energy states (−0.3 < ρ < 0.3).

As the calculation proceeds, large chunks of the path which reside on top of the high energy

barrier (parts of the path where 0.3 < ρ < 0.8 for LJ13 and −0.4 < ρ < 0.4 for LJ14) are

preferentially moved into the low-energy basins. This movement is not monatonic, where chumks

of the path only fall into the basin. Rather, the chunks will often fall into the basin and other times

stumble back onto the barrier. It is only the motion over many paths which exhibit the trend to

the path spending most of its time in the low energy states.
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LJ13 Energy Landscape

Figure 5.9: The energy landscape of the starting path used in the PSHMC sampling method
for the LJ13 cluster. This initial path is simply a thermalized version of the zero-temperature
configuration and displays the unphysical broken instanton behavior. The rapidly fluctu-
ating energy along the path (shown in blue dots) describes a cluster at a configurational
temperature of ε = 0.13. The red line is a moving average (70 points) of the path energies
and serves to guide the eye toward the average energy along the path.
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LJ14 Energy Landscape

Figure 5.10: The energy landscape of the starting path used in the PSHMC sampling
method for the LJ14 cluster which shows the unphysical broken instanton behavior. The
configurational of temperature of this cluster is ε. The blue dots show the energy along the
path and the red line the moving average (70 points) that serves as a guide to the eye.
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Figure 5.11: The reaction coordinate for the LJ13 initial path. Central (high energy) portion
of the path fluctuates about 0.4 < ρ < 0.5, which excludes the highest energy plateau of
the zero-temperature pathway ( t ≈ 0.7 in Figure 5.7 ), which is highly disfavored at this
configurational temperature.
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Figure 5.12: The reaction coordinate for the LJ14 initial path. Central portion of the
path fluctuates between all three high-energy configurations (−0.3 < ρ < 0.3) of the zero-
temperature path. At this configurational temperature the chain of particles is free to move
through the cluster on top of the barrier.
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LJ13 Energy Landscape

Figure 5.13: The ending path of the LJ13 cluster after sampling with the PSHMC method.
The transition occurs in a very short amount of time, and spends almost no time on top
of the high-energy barrier. This is the standard instanton picture. An animation of the
evolution (in sampling time τ) of the energy landscape and the motion of the cluster for
this final path is included in the supplementary materials (Animations 5.3 and 5.5).

After generating many paths using the continuous-time HMC method, the initially unphysical

transition paths converge to what resembles a physical transition for each cluster (see Figures 5.13

and 5.15). The grid spacing of the path is also sufficiently small as to resolve the actual dynamics

of the transition, as can be seen in Figures 5.14 and 5.16. These figures show that the path does

not look strictly like an instanton with this fine of a grid spacing. The reaction coordinate for the

ending paths, shown in Figures 5.17 and 5.18, reveal that the transition is a very fluid motion.

Once the cluster decides to make the transition over the energy barrier, it does not linger in the

high energy states, and quickly falls into the opposite barrier.

5.3.1 Conclusions from sampling the LJ clusters

There are many conclusions to be drawn from this analysis. First, the ending path created by

this sampling method healed the broken instanton, revealing a path between the two boundaries

which resembles a physical transition. This path is defined on a fine enough grid that the transition

itself is resolved and can be analyzed.

Performing the same gradient descent analysis on the ending path for the LJ13 cluster to find
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LJ13 Energy Landscape

Figure 5.14: Closer view showing the details of the transition region of the LJ13 ending
path. This figure illustrates the full structure of the transition region for the parameters
defined in section 5.3.
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LJ14 Energy Landscape

Figure 5.15: Energy landscape of the ending path of the LJ14 cluster. The instanton is now
healed and the transition time length is small. Note that the transition does not occur at
t = 0.5T which suggests that the transition rates remain inaccessible with this path sampling
method. An animation of the evolution (in sampling time τ) of the energy landscape and
the motion of the cluster for this final path is included in the supplementary materials
(Animations 5.4 and 5.6).
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LJ14 Energy Landscape

Figure 5.16: Closer view showing the details of the transition region of the LJ14 ending
path. This figure illustrates the full structure of the transition region for the parameters
defined in section 5.3.
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Figure 5.17: The reaction coordinate for the ending LJ13 path. This final configuration
shows the healed instanton picture, which is the correct thermodynamic picture for the
transition. The cluster only spends appreciable time in the basins, at ρ ≈ 0 and ρ ≈ 1,
and spends as little time as is possible in the higher energy transition states. The evolution
of the reaction coordinate as a function of sampling index is shown in the supplementary
material (Animation 5.7).
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Figure 5.18: The reaction coordinate for the ending LJ14 path. This final configuration
shows the healed instanton picture. The transition time for the LJ13 cluster in Figure 5.17
is shorter than this particlar LJ14 path. Similarly to the LJ13 case, the cluster spends very
little time in the high energy transition region for this ending path. The evolution of the
reaction coordinate as a function of sampling index is shown in the supplementary material
(Animation 5.8).

the quenched path reveals very different dynamics than the results shown in section 5.1. The

energy landscape, shown in figure 5.19, exhibits only two high-energy plateaus, with very small

energy changes occurring on each of these these plateaus. The reaction coordinate, shown in figure

5.20, reveals a much more complicated structure to these transitions. A more thorough analysis of

this motion reveals that the difference between these two paths stems from the fluctuations of the

cluster breaking the symmetric breathing of the outside shell particles, which forms a fracture in

the hexagonal ring.∗ While this analysis yields interesting dynamics for the Lennard Jones clusters,

it only serves to complicate the understanding of this particular method of path sampling.

While using the Lennard Jones clusters as a testing problem to analyze the continuous-time

path space HMC method is interesting physically, the complexity of the problem also has many

drawbacks. The motion of the cluster becomes very complex as the path evolves with each particle

seemingly fluctuating at random for the vast majority of time for each path. Understanding and

explaining this complicated motion is unreasonably difficult when this is only a test case and no

∗The breaking of this symmetry is obvious in hindsight. Any fluctuations of the ring particles off of the local
equilibrium will break this perfectly symmetric breathing mode.
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Quenched LJ13 Energy Landscape

Figure 5.19: Energy landscape of the path resulting from quenching the fluctuations from
of the ending LJ13 path. The high energy states between 0.2 < t < 0.4 and 0.6 < t < 0.8
shown in figure 5.13 have been eliminated, in favor of lower energy configurations which
break the symmetric breathing mode. This was not seen in the original zero temperature
configuration because the symmetric breathing mode moves through a unstable critical path.
The motion of the cluster after performing the quench of thermal fluctuations is shown in
the supplementary material (Animation 5.9).
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Figure 5.20: Reaction coordinate of the path resulting from quenching the fluctuations
from of the ending LJ13 path. The transition evolves continuously from the ground state
configuration to the excited state which is seen by the monotonically increasing nature of
ρ. There are 4 distinct intermediate states for this particular quenching.
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new physical insight will be gained. These complications originate for a few distinct reasons. The

cluster being defined in three dimensions means that it is free to rotate and translate. Subtracting

these rotational/translational degrees of freedom from the overall motion of the cluster is a difficult

problem which, when solved, still will not increase the understanding of this proposed sampling

method. Furthermore, the hard-core in the Leonard Jones potential is exceedingly stiff which, in

turn, requires the step size in algorithmic time (τ), to be dramatically decreased. It is then difficult

to gather useful statistics as calculation speed slows.

It is important to note that I have displayed only a single realization of an infinite number of

possible transition pathways. To find the most probable pathway, one would need to calculate the

density of paths with the specified boundary conditions. This is an exceedingly difficult problem for

any structure with a complex free energy landscape and/or many degrees of freedom. Remember

that each path is only a single realization of an infinite number of possible paths. The time at

which transition occurs for any of these ending paths remains unconstrained, which implies that

recovering any sort of density is inaccessible. The complexity of this test problem is obviously

getting in the way of a deeper understanding the behavior of the sampling method.
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Appendix 5

5.A The Path Potential G for the LJ clusters

Preliminaries

We need to perform a calculation of a few potentials in order to implement the HMC algorithm.

We require the Energy, G and the gradient of G where

V =
1

2

∑
i 6=j

4

(
1

r12
ij

− 1

r6
ij

)
(5.4)

G =
1

2
|F |2 − ε∇2V (5.5)

The potential is based on the Lennard-Jones (12-6) potential

V2(rij) = 4

(
1

r12
ij

− 1

r6
ij

)
(5.6)

so that the full potential can be written as

V =
1

2

∑
i 6=j

V2(rij) (5.7)

Now for some notation.

All greek indices (α, γ) denote cartesian coordinates (ie: 1,2,3) and roman indices denote particle

indices (ie: 1 to 13 for LJ13). The Euclidean distance and its derivative with respect to a cartesian

direction is
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rij =

[∑
α

(xiα − xjα)2

]1/2

(5.8)

∂rij
∂xkγ

=
(xiγ − xjγ) δki

rij
+

(xjγ − xiγ) δkj
rij

(5.9)

where δ is the Kronecker delta

Energy

The first and easiest potential to calculate is the total potential energy stored by the system

V =
1

2

∑
i 6=j

4

(
1

r12
ij

− 1

r6
ij

)
= 4

∑
i<j

(
1

r12
ij

− 1

r6
ij

)
(5.10)

Force

The calculation of G is more involved than the energy. Instead of deriving the entire result in

one step I will show separate calculations of the Force and then the Laplacian in the next section.

The force on particle k in the direction γ is Fkγ = ~Fk

Fkγ = −∂V (r)

∂xkγ
= −

∑
i

∂V

∂rik

∂rik
∂xkγ

= −
∑
i

(xkγ − xiγ)
V ′2(rik)

rik

=
∑
i

(xkγ − xiγ)W (rik)

(5.11)

where W (rij) =
−V ′2(r)

r

Laplacian of V

The Laplacian of the potential is given as ~∇ · (~∇V )
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L =
∑
γ

∂2V (r)

∂x2
kγ

=
∑
γ

∂

∂xkγ
(−Fkγ)

=
∑
γ

− ∂

∂xkγ

[∑
i

(xkγ − xiγ)W (rik)

]

=
∑
γ

[
−
∑
i

W (rik)−
∑
i

(xkγ − xiγ)2W
′(rik)

rik

]

= −
∑
i

(3W (rik)− rikW ′(rik))

(5.12)

The above quantity is a scalar. Now we introduce L (not the Lagrangian) as the Laplacian

summed over all particles

L =
∑
kγ

∂2V

∂x2
kγ

=
∑
ik

Z(rik) (5.13)

Z(r) = −3W (r)− rW ′(r) (5.14)

Gradient of G

The gradient of G is much more involved than the previous derivations. Lets start by seperating

G into two parts: G1 and G2

G = G1 +G2 (5.15)

G1 =
1

2

∑
iα

FiαFiα and G2 = −εL (5.16)

The gradient of the force squared is

∂G1

∂xkγ
=
∑
iα

Fiα
∂Fiα
∂xkγ

(5.17)

=
∑
iα

Fiα

 ∂

∂xkγ

∑
j

(xiα − xjα)W (rij)

 (5.18)

=
∑
iα

Fiα

∑
j

W (rij)
∂

∂xkγ
(xiα − xjα) +

∑
j

(xiα − xjα)
∂

∂xkγ
W (rij)

 (5.19)
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Chapter 6

Results in One Dimension

In this chapter, I present convincing numerical evidence that sampling the Ito-Girsanov form

of the OM functional produces unphysical paths. The cause of this unphysical nature will later be

shown to be due to a fundamental flaw in the construction of the continuous-time measure.

To frame the objective of this chapter, I remind the reader of the goal of this work. I am

interested in understanding and developing improved sampling methods, rather than forming a

deeper understanding Lennard-Jones cluster dynamics. The complexity of the LJ clusters obscures

how well the sampling procedure actually probes the underlying physics and dynamics of the system.

Having spent much time trying to understand the complexities of these larger systems, I will divert

my focus to a simpler problem.

To clearly understand the results of this analysis, I will study a single particle which resides in

an externally imposed one-dimensional potential. Obviously, this is a much simpler system than

the one used for the LJ clusters, and thus it is easier to explore in a detailed fashion. Paths in these

systems should be consistent the Boltzmann distribution at finite temperature. In one dimension,

visualization can be used to understand if an ensemble of paths are physical in this sense. In a one-

dimensional system, I do not need to consider the complication of the translational and rotational

degrees of fredom revealed in the study of the 3-dimensional LJ systems. These potentials can also

be tailored to probe specific physical properties of the path, for example understanding entropic

forces as seen in the work of Pinski and Stuart[40]. The generation of the initial path can also be

performed using a forward method from Chapter 2, which absolves the algorithm from having to

heal the broken instanton which would be present when using the thermalized zero-temperature
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path. This saves a large amount of computational time as the calculation does not need to anneal

the system before statistics can be gathered.

At the conclusion of this chapter, I hope to convince the reader that there are serious problems

with the Ito-Girsanov continuous-time formulation of the PSHMC sampling method. This chapter

will only present the evidence for this claim. In the subsequent chapter, I will employ the Metropolis

algorithm to identify what errors are made using this method.

6.1 Externally Imposed One-Dimensional Potential

For this study, the construction of the externally imposed potential in which the particle resides

is of utmost importance. To study rare transition events, the potential is required to have, at

minimum, two energy basins which are spatially separated by an energy barrier, which is large

compared to the available thermal energy. The paths of interest will start in one of these basins,

transition over the energy barrier, and end in the other basin. Possibly the simplest potential of

this form is a symmetric potential which possesses to generate energy basins at x = −1 and x = +1

and a barrier of unit energy at x = 0, and is defined by the polynomial

V (x) =
(
x2 − 1

)2
(6.1)

Each of the basins in this potential are quadratic near the minimum of the potential and thus

the leapfrog integration should lead to correct sampling. There been previous studies which have

looked at potentials with symmetric energy basins using past sampling procedures similar to the

one outlined here[35]. I am interested in finding paths which, on average, are compatible with

the Boltzmann distribution. The posterior probability distribution is extremely difficult to find to

high precision. To leave an appreciable amount of path in each well, the choice of basins which are

degenerate in energy is advantageous, as any disparity in energy in the basins will drive the vast

majority of the path to the lower energy well.

The requirement that the energy basins be degenerate in energy allows the unequal entropic

contributions of the basins to be probed. The path sampling methods discussed here are designed

to probe the free energy landscape, which includes both entropic and energy effects. To probe
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entropic effects in a symmetric potential one would have to resolve the tails of the path distribution,

as the probability of being in one basin is the same as being in the other. To explore this issue,

I use a potential which is degenerate but has a one narrow basin and one wide basin, which will

give rise to different entropic basins. The wide well is entropically preferred at any temperature

ε > 0. For paths to be consistent with the Boltzmann distribution, the particle should be observed

preferentially to the in the wide well over the narrow well. The analysis can now be performed

by looking at the basin probability, rather than requiring resolution of the tails of the posterior

probability distribution.

The potential I have chosen to perform this study on is an asymmetric potential which is given

by the following polynomial expression

V (x) =
(8− 5x)8(2 + 5x)2

226
(6.2)

which has two degenerate energy basins separated by a barrier of height unity. The narrow well

has a quadratic shape near the minima, similar to the symmetric potential in Equation 6.1, while

the wide well is almost nearly flat near the minima. This potential, which is illustrated in Figure

6.1, will be referred to as the Thin-Broad potential and will be the focus of the following numerical

results.

6.1.1 Simulation at Finite Temperature

The generation of a starting path for the one dimensional problem is significantly simplified

compared to the Lennard-Jones case. For the LJ clusters, the starting paths were by adding noise

to the zero-temperature paths which contained a broken instanton. This feature required significant

computational time to thermalize. For the 1D problems of interest here, I will avoid using a path

with a broken instanton by simply selecting a specific part of a forward trajectory. Carefully

constructing the path will still provide a non-Boltzmann starting path which serves as a test for

the method to heal to a Boltzmann-like state. In particular, in the starting path, the particle

spends about 50% of the time in the wide well, rather than the 90% required by Boltzmann. The

path will have a total of 3 crossings of the energy barrier, starting in the thin well and ending in

the wide well.
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Figure 6.1: The thin broad potential (Equation 6.2) which is the system study for the
chapter. The blue line shows the potential in which the particle resides, starting in the
left degenerate minima (x = 0.4) and making a transition(s) over the barrier to the right
minima (x = 1.6). The dashed grey line is the Boltzmann probability distribution.

The details of the procedure I have used is as follows. Using a forward method from Chapter 2,

I generate a trajectory and select a portion which spends a large time in one of the basins, makes

a transition over the energy barrier, and then spends a large time in the opposite basin. Next, I

cut a section of this path which is approximately centered about the transition. Make this new

section of the trajectory have a length of 1/3 of the final required path length time and modify the

end points of this path to have the boundary conditions of choice (first position is at x− and final

position is at x+). To create the final path make a sequence of three of these paths end to end,

with the middle path time reversed. See Figure 6.2 for an illustration of this initial path. This

forms a path which has a positional distribution of approximately 60% in one well and 40% in the

other, and has 3 separate and equally spaced transitions.

For the asymmetric Thin-Broad potential shown in Equation 6.2, this path is obviously non-

Boltzmann. The particle spends only 60% of the time in the broad well when the true distribution

should approximately 90% of time spent at ε = 0.25. A robust sampling algorithm is required to

heal this poor initial guess.
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Figure 6.2: Path used as the initial guess created by combining three trajectories, which are
visually separated at that dashed lines. The boundary conditions for the past are (x− = 0.4)
and(x+ = 1.6). The boundary conditions require at minimum one transition to occur along
the path, and in this case there are three transitions.

6.1.2 Final Paths

I have used the initial path shown in Figure 6.2 and applied the PSHMC method as well as a

novel method (novelHMC) to be introduced in the next chapter, to generate a sequence of paths.

The time step along the path, ∆t, chosen in accordance with the guidelines in Appendix 4.A, is

sufficiently small as to preserve a high level of accuracy in the simulation. This time step size is

very small for the sampling in the flat regions of the potential. It becomes necessary to have this

small of a step size only when sampling the very steep outer walls of the potential, especially for

the thin well which has a much steeper potential∗.

The parameters of these paths are: temperature ε = 0.25 with a path time length of T = 150.

The step size along the path is ∆t = 0.005, which sets the number of time steps along the path

to be NB = T/∆t+ 1 = 30, 001. The time step between paths, τ , is chosen to give an acceptance

rate for the MHMC step greater than 0.50 and will differ for each of the methods. For the PSHMC

simulation ∆τ = 10−7 yields an acceptance rate of 60% and for NovelHMC ∆τ = 10−6 yields

an acceptance rate of 91%. This small step size therefore only allows small changes between two

∗For example, the minimum of the final path is x ≈ −0.55 which corresponds to G ≈ 250 which leads to the step
size chosen. See Appendix 4.A for details.
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Figure 6.3: The ending paths of two HMC path sampling methods after a sequence of paths
have been generated. The red path was generated using PSHMC and the blue path via a
novel HMC path sampling method to be introduced in the following chapter. Note that the
PSHMC spends the majority of his time in the entropically disfavored, thinwell.

subsequent paths, which means that a large sequence of paths must be generated by each method

in order to infer the long-time behaviour. The number of Molecular Dynamics (MD) steps per

MHMC adjustment for PSHMC is NMD = 1000 and for NovelHMC is NMD = 500. This number

of MD steps leads to efficient sampling for the methods (see Section 4.5.3). Note that the larger

time step between paths (∆τ) corresponds to increased movement of the path, which decreases the

computational effort required to find the steady state behavior.

The ending paths for both methods are shown in Figure 6.3. There is a major problem with the

PSHMC result. It is clearly seen that the PSHMC method drives the path into the thin well, and

as will be seen, reaches the steady state in this unphysical configuration. The NovelHMC method

appears to sample the potential correctly (see Chapter 7 for details).

The underlying Boltzmann distribution provides a metric to gauge the physicality of the path

ensemble. Minimizing the free energy of the system means that the majority of the positions along

each path should be loacted in the broad well, as there are more states to occupy. This potential

was designed specifically to probe such entropic factors. The calculation of time spent in each well

is performed very easily using the Heaviside function Θ to define B(s) to be the fraction of the
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Figure 6.4: The broad well fraction (Equation 6.3) shown paths are generated. The expected
Boltzmann state is shown as the dashed orange line. The red, lower curve corresponds to the
PSHMC sequence and shows the method driving the system to a non-Boltzmann state. The
blue curve displays B(s) for the novel HMC method oscillating near the expected Boltzmann
value.

path which is contained in the broad well, namely

B(s) =
1

T

∫ T

0
dt Θ(x

(s)
t ) ≈ 1

N

∑
i

Θ(x
(s)
i ) (6.3)

where the sampling indexes denoted as s, and the corresponding path is x
(s)
i . If the sequence of

paths generated using a sampling method disagrees with the Boltzmann prediction for this metric,

then the paths generated with the method are clearly not physical.

B(s) is shown as sampling proceeds in Figure 6.4. The PSHMC method quickly drives the

sampling to the incorrect well according to the Boltzmann distribution. The percent of time

spent in this wide well steadily decreases from approximately 60% to 5%. Once the path for

PSHMC falls into the narrow well, there is no recovery to the Boltzmann state. These paths are

most assuredly not physical. The NovelHMC method behaves in a much different, and in many

respects, more sporadic manner, where the fraction of the path in the broad well fluctuates between

0.5 < B(s) < 1.0. This behaviour is compatible with physical intuition as the paths should have
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large fluctuations but be roughly centered on the expected Boltzmann result.∗ Note that these

results have not converged to the target distribution, as the MHMC method does for forward

integration, as the paths still have an error which is related to the step size ∆t, and the length of

the path, T . Clearly, the ensemble of paths generated using novelHMC is much better behaved

than the paths generated with PSHMC. †

6.2 Equivalence of Path Probability

I would now like to consider a computer experiment which creates paths using the following

very simple algorithm. First, generate a set of random Gaussian variates {ξ}, of length N, where

T = N ∗ δt is much larger than the first passage time as given in Figure 2.1. Next, generate a

trajectory using the leapfrog (Euler-Maruyama) integrator

xi+1 = xi + F (xi)∆t+
√

2ε∆tξi (6.4)

where x0 is set to be in the minimum of the wide well (x0 = 1.6) and record the endpoint of

this trajectory. Performing this integration gives a single trajectory of length T , and end point

xend = x(T ). Up to this point the analysis is exactly equivalent to the forward leapfrog method,

and the OM path probability is simply

POM =
∏
i

1√
2π

exp(−ξ
2
i

2
) (6.5)

Now, rather than generating an entire new set of random Gaussian variates, simply scramble the

set into a completely different ordering. It is important to emphasize that this analysis uses exactly

the same set of random variates, and thus the probability of all such paths will be equal. Using

the scrambled set {ξ}, generate a new path using the leapfrog integrator and record the endpoint

of the trajectory, xend = x(T ).

This basic experiment has been performed on the globally Lipschitz force defined from the

potential in Equation 6.2. The length of trajectory was taken to be T = 1000, according to a

∗The paths should lie exactly on the Boltzmann result only in the limit of the path time T →∞.
† See the attached animations to see a sample of how the paths evolve for each of these methods.
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Figure 6.5: Examples of 6 paths generated using the leapfrog integration method. Each
of the paths in this figure use an identical set of random Gaussian fluctuations and the
same starting point x− = x(0), the only difference is the ordering of the random numbers.
Every one of the paths in the figure have equivalent OM probabilities, and there are N ! =
(2 ∗ 106)! ≈ 1011733474 total paths in this set. Note how much variation in path structure
is obtained from only this single set of random numbers. Surely almost every imaginable
trajectory is contained in this set of random numbers alone.
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Figure 6.6: Distribution of end points of the set of trajectories with equal OM probabil-
ity. Here the endpoints of 472,640 different trajectories are shown. The blue line is the
Boltzmann distribution for the configurational temperature ε = 0.25

similar analysis performed in Chapter 1 (see Figure 2.1). To sample as close as possible to the

actual Boltzmann distribution (remember there is no MHMC test performed in this experiment),

I have chosen a very small time step of ∆t = 0.0005, giving a total number of steps, N = 2 ∗ 106.

A sample of 6 of the possible paths is shown in Figure 6.5, all of which are extremely different

realizations of the trajectory. One could ask the question: What path is the most probable path?

The question has no answer, as all of these paths are equally probable.

This procedure will give a set of a maximum of N ! different trajectories (this number surpasses

the distinction of astronomically large for this choice of N), all of which have equivalent probabilities

under the OM probability. I have sampled a set of 472,640 scrambled paths in this experiment,

and found that the distribution of endpoints created by the calculation agree with Boltzmann up

to an error which is due to the finite step size (discussed in Figure 2.3 for a similar potential). The

normalized distribution of endpoints are shown in Figure 6.6.

Now recall the regularized probability measure for the continuous-time method

dP
dQ

= exp

(
− 1

2ε

(
V (x+)− V (x−) +

∫ T

0
dtG(xt)

))

This path probability has an explicit dependence on the specific path, as can be seen in the last term
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of the above equation. The looming question is now determining why some specific paths, which

minimize G(xt), maximize the probability. This could help in the understanding of the unphysical

results obtained when sampling the continuous-time form of the OM functional.

6.3 Questions raised from this analysis

The results shown in this chapter motivate two questions which are fundamentally important

to path sampling methods.

• Why does the PSHMC fail so catastrophically when sampling the Ito-Girsanov form of the

OM probability?

The analysis of the evolution of paths generated with the PSHMC method shows the continuous-

time OM functional exhibits unphysical evolution. Identifying what exactly has gone wrong is very

difficult when examining the problem using simple Brownian Bridges. ∗ All of the errors for these

Brownian processes are simply ignored when integrating the path forward in time.

• If all paths have (almost) equivalent probabilities, how can one find a ’Most Probable Path’?

In previous works, the path potential G was used as an indicator that one could optimize

paths. This formed a notion of a Most Probable Path (MPP)[21]. The analysis of the equivalence

of path probability in Section 6.2 raises serious questions into the validity of the idea of MPPs.

Furthermore, long paths will all have almost equivalent OM probabilities. Why should some of

the paths in this set be most probable? Path probability equivalence would suggest that the path

density should be the object of interest, rather than a single path with maximal probability.

∗It turns out that sampling with only the Brownian Bridge fails to sample the full measure in Equation 4.13.
This point will be discussed further in Chapter 7.
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Chapter 7

Finite Method

Clearly the evidence from Chapter 6 is compelling enough to ask serious questions about the

path probability distribution derived using the Ito-Girsanov change of measure (PIG). The more

difficult question is what methods are available that are understood well enough to definitively

answer such questions. Evidently, the understanding of Brownian dynamics has led us astray, and

therefore should not be used as the foundation to probe these tough questions.

In this chapter, I will present the framework of a novel view using the Metropolis algorithm which

is analogous to the PSHMC method of Chapter 4, but not based on a continuous-time formalism.

This method is a powerful tool that is proven to generate paths which are consistent with the

Boltzmann probability distribution, and can be employed to examine errors made in the integration.

Using the Metropolis algorithm as a lens, I will illuminate a fundamental misunderstanding of this

continuous time probability measure (PIG).

7.0.1 Preliminaries

The notation used in this chapter is adapted from the PSHMC method of Chapter 4. The time

step along the path is ∆t and between paths is ∆τ , each of which are related to the leapfrog time

steps in the following manner

h =
√

2 ∆t η =
√

2 ∆τ (7.1)
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It is very useful to introduce the average and difference between path positions with the following

notation

x̄n =
xn+1 + xn

2
∆xn = xn+1 − xn

Note that x̄n and ∆xn depend on the n+ 1 index, which will become important when performing

the derivatives later in this chapter.

Because this is a finite time method, the second time derivative operator, L, from the PSHMC

method is the 2nd order finite difference operation:

Lxn =
xn+1 − 2xn + xn−1

∆t
(7.2)

7.1 Integrating Forward

In order to extend this analysis for use with multiple integration methods, I will perform the

analysis with a weighted Force. This force will take one of 4 forms here

• Leapfrog: Fw(xn, xn+1) = F (xn)

• Mid Point: Fw(xn, xn+1) = Fw(xn+1, xn) = F
(
xn+1+xn

2

)
= F (x̄n)

• Trapezoid: Fw(xn, xn+1) = Fw(xn+1, xn) = F (xn)+F (xn+1)
2

• Simpson’s: Fw(xn, xn+1) = Fw(xn+1, xn) = (F (xn) + 4F (x̄n) + F (xn+1)) /6

Leapfrog is the only weighted Force shown here which is not symmetric about the forward and

backward direction. The symmetric Forces will benefit from a significant simplification to the

energy drift (δen), which will be discussed in an Section 7.1.2. For this particular analysis, I

will focus on the Mid-Point weighted Force, but the full derivation using the other 3 methods

are provided in Appendix 7.A, along with an explanation of the advantages and disadvantages

associated with the each choice of weighted Force.
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7.1.1 Forward Evolution

The method begins with the prescription for the forward and backward integration in time

xn+1 = xn + vinh+
1

2
h2Fw(xn, xn+1) (7.3)

xn = xn+1 − vfnh+
1

2
h2Fw(xn+1, xn) (7.4)

Note that these equations require two velocities at every index, n. Solving for each of the velocities

yields the following set of equations

vfn =
1

h
(xn+1 − xn +

h2

2
Fw(xn+1, xn)) (7.5)

vin =
1

h
(xn+1 − xn −

h2

2
Fw(xn, xn+1)) (7.6)

7.1.2 Energy Drift Between Steps

The drift in energy, δen, is simply the potential energy plus the kinetic energy, which is easily

written in terms of the path variables and the weighted force

δen = ∆PE + ∆KE (7.7)

= U(xn+1)− U(xn) +
1

2

(
vfn

)2
−
(
vin
)2

(7.8)

= U(xn+1)− U(xn) +
1

2

(
vfn + vin

)(
vfn − vin

)
(7.9)

The energy drift is due to the approximate numerical integration necessitated by using discrete

time steps. A manipulation can now be employed with Equations 7.5 and 7.6, which makes the

calculation of the energy drift much easier. Adding and subtracting the initial and final velocities

vfn − vin =
h

2
(Fw(xn+1, xn) + Fw(xn, xn+1)) (7.10)

vfn + vin =
h

2
(xn+1 − xn +

h2

4
(Fw(xn+1, xn)− Fw(xn, xn+1))) (7.11)
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which can be directly inserted into the equation for the drift in energy.

δen = U(xn+1)− U(xn) +
1

2

(
xn+1 − xn +

h2

4
(Fw(xn+1, xn)− Fw(xn, xn+1))

)
(Fw(xn+1, xn) + Fw(xn, xn+1))

(7.12)

= U(xn+1)− U(xn) + ∆xn

(
Fw(xn+1, xn) + Fw(xn, xn+1)

2

)
+

∆t

4

(
Fw(xn+1, xn)2 − Fw(xn, xn+1)2

)
(7.13)

Referring back to Section 7.1, the last term will vanish for symmetric (that is, Mid-Point,

Trapezoid and Simpson’s) weighted Forces. This dramatically simplifies the equation for the energy

drift for the following analysis.

7.2 Probability Between Steps Along a Path

The goal of this analysis is to derive an effective Hamiltonian which resembles Λ from Equation

4.19. The OM statement holds in relation to the probability as a function of the canonical variables

POM (q, p) = POM (xn, vn), which is used in a forward trajectory. Here I am interested in deriving

an analogous probability between two points on a path, namely POM (xn, xn+1). By applying a

change of variables, the OM statement can also be used on this probability∗

Pn = P(xn, xn+1) = JnP(xn, vn) = Jn exp

(
−ξ

2
n

2

)
(7.14)

where the Jacobian transformation between a variable vn and xn+1 is

Jn = h

∣∣∣∣ ∂vin∂xn+1

∣∣∣∣ (7.15)

The scaling of the Gaussian random variates, ξn, with the configurational temperature, ε, is given

by the Maxwell-Boltzmann distribution with unit mass, namely

vin =
√
ε ξn (7.16)

∗This statement is only loosely true as the sum is necessary for paths to have the correct probability. This term
will become the full OM statement when summing the paths to form the effective Hamiltonian in the next section
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The probability can now be written in terms of the velocities along the path

Pn = Jn exp

(
−ξ

2
n

2

)
= Jn exp

(
−(vin)2

2ε

)
(7.17)

Performing some algebraic manipulations and substituting the path positions for vin from Equa-

tion 7.6 yields an expression which resembles the original OM probability

− lnPn =
(vin)2

2ε
− ln J0 (7.18)

=
∆t

2ε

(
1

2

∣∣∣∣xn+1 − xn
∆t

− Fw(xn, xn+1)

∣∣∣∣2
)
− ln J0 (7.19)

In keeping with the aim of this analysis, I will now simply expand this term. The next step is to

add and subtract the energy error along the path δe. This will allow a close examination of exactly

what errors have been made in the ensuing analysis.

− lnPn =
∆t

2ε

[
1

2

((
xn+1 − xn

∆t

)
− 2Fw(xn, xn+1)(xn+1 − xn) + Fw(xn, xn+1)2

)
− δe

∆t

+
U(xn+1)− U(xn)

∆t
+

(
xn+1 − xn

∆t

)2

(Fw(xn+1, xn) + Fw(xn, xn+1))

+
1

4
(Fw(xn+1, xn)2 − Fw(xn, xn+1)2)

]
− log J0 (7.20)

=
∆t

2ε

[
U(xn+1)− U(xn)

∆t
− δe

∆t
+

1

2

∣∣∣∣xn+1 − xn
∆t

∣∣∣∣2 +
1

4
|Fw(xn+1, xn)|2 +

1

4
|Fw(xn, xn+1)|2

+
1

2

(
xn+1 − xn

∆t

)
(Fw(xn+1, xn)− Fw(xn, xn+1))

]
− log J0 (7.21)

This formula is a fairly complicated but has the form that is appropriate to perform the splitting

of the symplectic integrator[36]. Note that the last term in the square brackets will vanish for all

methods introduced previously other than leapfrog.

The quantity, Pn, is the probability of the path segment between positions xn and xn+1. Cre-

ating the full effective Hamiltonian requires taking the product over all path positions.

∏
n

Pn ∝
∏
n

exp(−H̃eff ) = exp
∑
n

−(H̃eff ) (7.22)

94



Note that the potential terms telescope in this expression. Because of the fixed boundary conditions

they only contribute to the normalization constant. Here, I am only concerned with relative changes

in the probability where the normalization constant cancels, analogously to the derivation in the

PSHMC method (Equation 4.15).

H̃eff =
U(xn+1)− U(xn)

2ε
− logP (7.23)

To form the final effective Hamiltonian, simply add in the auxiliary variables with unit mass;

Heff = H̃eff +
N∑
n=1

1

2
|pn|2 (7.24)

7.3 Non-Zero Time-Step Effective Hamiltonian

The full form of the effective Hamiltonian is now

Heff =
N∑
n=1

1

2
|pn|2 +

1

2

N∑
n=1

∣∣∣∣xn+1 − xn
∆t

∣∣∣∣2 +
N∑
n=1

Φn (7.25)

This has been written specifically to resemble the PSHMC effective Hamiltonian in Equation 4.19,

shown here for reference

Λ(x, p) =
1

2ε

(
−1

2

∫ T

0
dt
(
p ·L−1 · p

)
− 1

2

∫ T

0
dt
(
x ·L · x

)
+

∫ T

0
G(x)dt

)

The path potential, and its spacial derivative, for this novel HMC (analogous to G) is given as

Φn =
1

4
|Fw(xn+1, xn)|2 +

1

4
|Fw(xn, xn+1)|2

+
∆xn
2∆t

(Fw(xn+1, xn)− Fw(xn, xn+1))− 2ε

∆t
log J0 −

δen
∆t

(7.26)

Φn = Ψn −
δen
∆t

(7.27)

φn =
N∑
n=1

∂Φn

∂xn
=

∂

∂xn

(
Ψn + Ψn−1 −

δen
∆t
− δen−1

∆t

)
(7.28)
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7.3.1 Mid-Point

I will use the weighted force corresponding to evaluation at the Mid-Point to derive the path

potentials shown above. The force is defined to be

Fw(xn, xn+1) = Fw(xn+1, xn) = F

(
xn+1 + xn

2

)
= F (x̄) (7.29)

The Jacobian transformation is not unity, as it is in the leapfrog integration, and must be included

explicitly in the expression for the effective Hamiltonian.

Jn = h
∂vin
∂xn+1

= 1− ∆t

2
F ′(x̄) (7.30)

Importantly, this integration is symplectic, which is shown by evaluating the following (details of

how to interpret this equation are given in Appendix 7.B).

Jn =

∣∣∣∣∣∣ ∂v
i
n

∂xn+1

(
∂vfn
∂xn

)−1
∣∣∣∣∣∣ = 1 (7.31)

The energy drift is very simple for this symmetric weighted force

δe = U(xn+1)− U(xn) + (xn+1 − xn)F (x̄) (7.32)

Finally, the calculation of the components of the analog to the path potential are shown for com-

pleteness. These quantities do not require further manipulation for the derivation of the algorithm,

but are necessary to perform the path sampling on a computer.

Ψn =
1

2
F (x̄)2 − 2ε

∆t
log

(
1− ∆t

2
F ′(x̄)

)
(7.33)

∂Ψn

∂xn
=

1

2

(
F ′(x̄n)F (x̄n) +

ε

Jn
F ′′(x̄n)

)
(7.34)

∂Ψn−1

∂xn
=

1

2

(
F ′(x̄n−1)F (x̄n−1) +

ε

Jn−1
F ′′(x̄n−1)

)
(7.35)

− ∂

∂xn

(
δen
∆t

)
= − 1

∆t

(
F (xn)− F (x̄n) +

1

2
∆xnF

′(x̄n)

)
(7.36)
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− ∂

∂xn

(
δen−1

∆t

)
= − 1

∆t

(
−F (xn) + F (x̄n−1) +

1

2
∆xn−1F

′(x̄n−1)

)
(7.37)

7.4 Forward Propagation of Paths

Generating updated paths will follow an analogous procedure as was shown in Section 4.3. The

integration starts with Hamilton’s equations

dxn
dτ

=
∂Heff

∂pn
= pn (7.38)

dpn
dτ

= −
∂Heff

∂xn
= Lxn − φn (7.39)

Integrating Forward in Path Time τ

Using the same splitting used for the PSHMC method[13], I will find an integration scheme to

generate these path updates. The velocities are chosen initially from the random Gaussian variates

p(0)
n, =

√
2 ε

∆t
ξn (7.40)

First Half Step

π(0)
n = p(0)

n −
η

2
φ(0)
n (7.41)

Full Step

Using Crank-Nicolson[37] on the full step, I arrive at

π(1)
n − π(0)

n =
η

2

(
Lx(1)

n + Lx(0)
n

)
(7.42)

x(1)
n − x(0)

n =
η

2

(
π(1)
n + π(0)

n

)
(7.43)

By using Crank-Nicolson at this stage, the quadratic variation (fluctuations of the path) is preserved

[35], since the Crank-Nicholson method is accurate to second order in ∆t.
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Second Half Step

p(1)
n = π(1)

n −
η

2
φ(1)
n (7.44)

Combining the Integrations

The Stochastic Partial Differential Equation (SPDE) is generated by eliminating π
(1)
n from the

system of Equations 7.42 and 7.43. Using Equation 7.41 to eliminate π
(0)
n and simplify to get the

SPDE given below

(
I− ∆τ

2
L

)
x(1)
n =

(
I +

∆τ

2
L

)
x(0)
n − ∆τ φ(0)

n + η p(0)
n (7.45)

Generating the Hamiltonian Flow

The reversibility of the Hamiltonian flow allows the backward equation to be written (remem-

bering to negate the momenta) as

(
I− ∆τ

2
L

)
x(0)
n =

(
I +

∆τ

2
L

)
x(1)
n − ∆τ φ(1)

n − η p(1)
n (7.46)

Propagating the SPDE forward in time a second step generates the following equation

(
I− ∆τ

2
L

)
x(2)
n =

(
I +

∆τ

2
L

)
x(1)
n − ∆τ φ(1)

n + η p(1)
n (7.47)

Note that p
(1)
n is an unknown and is not defined by the random Gaussian variates as p

(0)
n is. Using

Equations 7.45, 7.45 and 7.45 to eliminate both of the momenta paths (p
(1)
n and p

(0)
n ) creates an

equation to generate updated paths using 2 previous paths.

(
I− ∆τ

2
L

)
x(2)
n =

(
I +

∆τ

2
L

)(
2x(1)

n

)
−

(
I− ∆τ

2
L

)(
x(0)
n

)
− 2 ∆τ φ(1)

n (7.48)

It is now possible to calculate x
(2)
n from x

(1)
n and x

(0)
n with this equation Note that this equation
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can be rewritten to be computationally efficient in the following way

(
I− ∆τ

2
L

)
x(2)
n = I

(
2x(1)

n − x(0)
n

)
+

(
∆τ

2
L

)(
2x(1)

n + x(0)
n

)
− 2 ∆τ φ(1)

n (7.49)

7.5 Calculating the Integration Errors

The MHMC adjustment will be performed between paths. The energy drift between two paths

x(1) and x(0) is simply the difference in the effective Hamiltonian

∆Eeff = H
(1)
eff −H

(0)
eff (7.50)

Rewrite two of the above equations 7.44 and 7.41 and form, ∆Eeff , the error in the effective

energy:

p(1)
n − p(0)

n =
η

2

(
Lx(1)

n − φ(1)
n + Lx(0)

n − φ(0)
n

)
(7.51)

p(1)
n + p(0)

n =
2

η

(
x(1)
n −

η2

4
φ(1)
n − x(0)

n +
η2

4
φ(0)
n

)
(7.52)

Using these equations it is possible to eliminate need for explicitly calculating the momenta.

The resulting energy drift (error) is now

∆Eeff = Φ(1) − Φ(0) +
1

2

Nt∑
n=1

∣∣∣∣∣ x
(1)
n+1 − x

(1)
n

∆t

∣∣∣∣∣
2

− 1

2

Nt∑
n=1

∣∣∣∣∣ x
(0)
n+1 − x

(0)
n

∆t

∣∣∣∣∣
2

+
1

2

Nt∑
n=1

(
Lx(1)

n − φ(1)
n + Lx(0)

n − φ(0)
n

)
·

(
x(1)
n − x(0)

n −
∆τ

2

(
φ(1)
n − φ(0)

n

)) (7.53)

Recognize cancellation of terms in the expression for ∆Eeff

∆Eeff = Φ(1) − Φ(0) − 1

2

Nt∑
n=1

(
φ(1)
n + φ(0)

n

)
·
(
x(1)
n − x(0)

n

)
− 1

2

∆τ

2

Nt∑
n=1

(
Lx(1)

n − φ(1)
n + Lx(0)

n − φ(0)
n

)
·
(
φ(1)
n − φ(0)

n

) (7.54)
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7.6 Numerical Considerations

I have used the algorithm introduced in this chapter to sample paths of a particle in the one

dimensional well shown in Equation 6.2. The ensemble of paths is shown to sample paths which

are in much better agreement with the equilibrium Boltzmann value (refer to Figure 6.4). The

discrepancy from the exact equilibrium value is an unavoidable side effect of sampling paths, and

can only be handled correctly by using a vanishingly small time step (∆t) in the path sampling

algorithm, which was an oversight in the continuous time version of the algorithm.

In the Brownian formulation, all discussion of the energy error is absent. Now it is clear that

the accuracy of the integration method plays an important role when the time-step (in the original

SDE) is not zero. The midpoint integrator is more accurate than leapfrog. When interpreting paths,

the complete sequence, {xn}, is given. This eliminates the numerical iteration usually encountered

when using the midpoint method. Furthermore, the midpoint method can be interpreted as a

Stratonovich approach.

7.6.1 Advantages of Using a Non-zero Time Step

The main reason for using a method which is based on the Metropolis algorithm is that the paths

are ensured to be consistent with Boltzmann statistics. The inconsistencies with the underlying

Boltzmann distribution present in the PSHMC results is what drove the development of this new

perspective to path sampling. Along the way, new insights are gained.

One of the more important insights comes from the full understanding of the method. The

steps derived in this new method are all easily analyzed using standard numerical techniques. The

complexities of the ”infinities” in the continuous time PSHMC path probability are avoided. This

allows the full form of the effective path potential, Φ, to be written without requiring additional

assumptions, such as the reliance on the quadratic variation sum rule holding along the path.

7.6.2 Connection to the ∆t→ 0 limit

The connection with the PSHMC method can be readily seen by examining the differences

between the path potential, G, and its analog from the Metropolis method, Φ, shown in Equation

7.26. Referring to the formulas in Appendix 7.A.1 reveals an effective path potential Φ for leapfrog
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to be

Φn =
1

4
F (xn+1)2 +

1

4
F (xn)2 +

1

2

(
xn+1 − xn

∆t

)
(F (xn+1)− F (xn))− δen

∆t
(7.55)

In order to recover the original path potential, G, from the continuous time limit, two important

assumptions are required. In the limit when δen is zero (an assumption which will be discussed

later), and when the quadratic variation sum is valid along the path (∆xn ≈ 2ε∆t), the middle

term becomes

1

2

(
∆xn
∆t

)
(F (xn+1)− F (xn)) =

1

2

(∆xn)2

∆t

(F (xn+1)− F (xn))

∆xn
≈ −ε∇2V (x) (7.56)

which is equivalent to the path potential, G, given in Equation 4.12. This approximation is only

valid when the noise, embodied by ∆x2, is not correlated with the particle position. The conse-

quence of this assumption, made in the derivation of the Ito-Girsanov path probability measure, is

a source of the unphysical nature of the Ito-Girsanov measure.

Let us now look at one of the above assumptions required of the error along the path ∆en. The

path potential is only valid in its full form when this error ∆en → 0. Using the leapfrog force,

Equation 7.61 states

δen
∆t

=
U(xn+1)− U(xn)

∆t
+

(xn+1 − xn)

∆t

(
F (xn+1) + F (xn)

2

)
+

1

4

(
F (xn+1)2 − F (xn)2

)
(7.57)

Note that this error being non-zero also means that the integration violates detailed balance along

the path. This term enters directly into the effective Hamiltonian and has an order 1 error in the

last term and therefore in the path. Using the midpoint force eliminates this order one error.

7.6.3 Interpretation of δen

There are two errors present in this calculation, one along the path (δen), and the other between

paths (∆Eeff ), which have very different interpretations in the algorithm. The error between

paths (∆Eeff ) is used in the MHMC test, which suppresses paths which are inconsistent with the

Boltzmann distribution. The error along the path (δen), on the other had, is not modified by any

Metropolis-Hastings adjustment, as there are no rejections along the path, only between complete

path proposals.
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Without incorporating rejections along the path, minimizing δen will directly improve the qual-

ity of paths. The specific choice of weighted force determines the magnitude of this error. The role

of δe is overlooked in the Brownian view of this process for non-zero time steps. Therefore, it is

omitted in the implementation of the PSHMC algorithm described in Chapter 4.
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Appendix 7

7.A Alternate Weighted Forces

7.A.1 LeapFrog

The leapfrog integration is central to this discussion as it is analogous to the Euler-Maruyama

which was the basis for the derivation of the Ito-Girsanov probability. The local integration error of

this method is O(∆t2) and it is a symplectic integration method (see Appendix 7.B). It is imporant

to note that, unlike the other weighted forces discussed here, the error along the path per time

period δe/∆t, which is a term in the effective Hamiltonian, has an order one error. Forces which

are symmetric about the position, that is where F (xn+1, xn) = F (xn, xn+1), avoid this error.

Fw(xn, xn+1) = F (xn) (7.58)

Jn = h
∂vin
∂xn+1

= 1 (7.59)

Jn = −1 (7.60)

δen = U(xn+1)− U(xn) + (xn+1 − xn)

(
F (xn+1) + F (xn)

2

)
+

∆t

4

(
F (xn+1)2 − F (xn)2

)
(7.61)

Ψn =
1

4
F (xn+1)2 +

1

4
F (xn)2 +

1

2

(
xn+1 − xn

∆t

)
(F (xn+1)− F (xn)) (7.62)

∂Ψn

∂xn
=

1

2
F ′(xn)F (xn)− 1

2∆t
(F (xn+1)− F (xn))− ∆xn

2∆t
F ′(xn) (7.63)

∂Ψn−1

∂xn
=

1

2
F ′(xn)F (xn) +

1

2∆t
(F (xn)− F (xn−1)) +

∆xn−1

2∆t
F ′(xn) (7.64)

− ∂

∂xn

(
δen
∆t

)
= − 1

∆t

(
F (xn)−

(
F (xn+1) + F (xn)

2

)
+

∆xn
2

F ′(xn) +
∆t

2
F ′(xn)F (xn)

)
(7.65)
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− ∂

∂xn

(
δen−1

∆t

)
= − 1

∆t

(
−F (xn)−

(
F (xn) + F (xn−1)

2

)
+

∆xn−1

2
F ′(xn) +

∆t

2
F ′(xn)F (xn)

)
(7.66)

7.A.2 Trapezoid

The trapezoidal force, where the average force is evaluated over the interval, has order (O(∆t3))

local integration error. This is the same order as the midpoint method which was thuroughly

investigated in Chapter 6. However, the mothod is not symplectic, as can be seen in Equation 7.6.3

below. Symplectic integration is not necessary for this path sampling method as the integration

lengths are not large enough to require their use, but is favored if there is no loss in the order of

integration error. Thus, the Mid-Point method is preferred.

Fw(xn, xn+1) =
F (xn) + F (xn+1)

2
(7.67)

Jn = h
∂vin
∂xn+1

= 1− ∆t

2
F ′(xn+1) (7.68)

Jn =
1−∆t F ′(xn+1)/2

1−∆t F ′(xn)/2
(7.69)

δe = U(xn+1)− U(xn) + ∆xn

(
F (xn) + F (xn+1)

2

)
(7.70)

Ψn =
1

2
(Fn + Fn+1)2 − 2ε

∆t
log(1−∆t F ′(xn+1)/2) (7.71)

∂Ψn

∂xn
=
F (xn) + F (xn+1)

4
(7.72)

∂Ψn−1

∂xn
=
F (xn−1) + F (xn)

4
+

ε F ′′(xn)

1−∆tF ′(xn)/2
(7.73)

− ∂

∂xn

(
δen
∆t

)
= − 1

∆t

(
F (xn)− F (xn+1)

2
+ ∆xn

F ′(xn)

2

)
(7.74)

− ∂

∂xn

(
δen−1

∆t

)
= − 1

∆t

(
F (xn−1)− F (xn)

2
+ ∆xn−1

F ′(xn)

2

)
(7.75)

7.A.3 Simpsons

Simpsons method is a higher order method than the other weighted forces considered here, with

local error O(∆t4). However, it is not a syplectic method and, in order to perform a more rigorous
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analysis, was not studied in great detail here. This force could lead to an improvement in path

fidelity over the other methods.

Fw(xn, xn+1) = (F (xn) + 4F (x̄n) + F (xn+1)) /6 (7.76)

Jn = h
∂vin
∂xn+1

= 1− h2

12

(
F ′(xn+1) + 2F ′(x̄n)

)
(7.77)

Jn =
1− ∆t

6 (F ′(xn+1) + 2F ′(x̄n))

1− ∆t
6 (F ′(xn) + 2F ′(x̄n))

(7.78)

δe = U(xn+1)− U(xn) +
∆xn

6
(F (xn) + 4F (x̄n) + F (xn+1)) (7.79)

Ψn =
1

2

(
F (xn) + 4F (x̄n) + F (xn+1)

6

)2

− 2ε

∆t
ln

(
1− ∆t

6

(
F ′(xn+1) + 2F ′(x̄n)

))
(7.80)

∂Ψn

∂xn
=

1

36
[F (xn) + 4F (x̄n) + F (xn+1)][F ′(xn) + 2F ′(x̄n)]− εF ′′(x̄n)

3Jn
(7.81)

∂Ψn−1

∂xn
=

1

36
[F (xn−1) + 4F (x̄n−1) + F (xn)][F ′(xn) + 2F ′(x̄n−1)] +

ε(F ′′(xn) + F ′′(x̄n−1))

3Jn−1
(7.82)

− ∂

∂xn

(
δen
∆t

)
= − 1

∆t

(
F (xn)− 1

6
(F (xn) + F (x̄n) + F (xn+1)) +

∆xn
6

(F ′(xn) + 2F ′(x̄n))

)
(7.83)

− ∂

∂xn

(
δen−1

∆t

)
= − 1

∆t

(
−F (xn) +

1

6
(F (xn−1) + F (x̄n−1) + F (xn)) +

∆xn−1

6
(F ′(xn) + 2F ′(x̄n−1))

)
(7.84)

7.B Symplectic Integration

It is important to note that the various weighted Forces in this chapter are not all symplectic

integration schemes. Integrators which are symplectic conserve the probability of paths in the

following way

P(xn, v
i
n) = P(xn+1, v

f
n) (7.85)

It is difficult to perform this operation as the final velocities are not defined in terms of other

velocities. For this reason, I will show a useful trick of how to perform this change of variables.

As an aside, the choice of a symplectic integration scheme is a smaller issue for this path
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sampling method than it is for large-time integrations of a Hamiltonian system. For this path

sampling algorithm, the integration time is of much shorter length than a full scale Hamiltonian

simulation. Furthermore, the Metropolis-Hastings adjustment will handle the errors made with a

non-symplectic integration scheme. For the results shown above, I have only used the symplectic

Mid-Point weighted force.

Forward Change of Variables

Begin with the standard change of variables from v
(i)
n to xn+1

P(xn, v
i
n) = J→n P(xn, xn+1) (7.86)

where

J→n =

∣∣∣∣h ∂vin
∂xn+1

∣∣∣∣ (7.87)

Backward Change of Variables

Similarly, changing variables from v
(f)
n to xn

P(xn+1, v
f
n) = J←n P(xn+1, xn) (7.88)

where

J←n =

∣∣∣∣∣h∂vfn∂xn

∣∣∣∣∣ (7.89)

Inverting this operation is done by inverting the operator

P(xn+1, xn) = (J←n )−1 P(xn, v
f
n) (7.90)

Conserving Probability Through Full Step

Combining these two change of variables

P(xn, v
i
n) = Jn P(xn+1, v

f
n) (7.91)
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where

Jn = J→n (J←n )−1 =

∣∣∣∣∣∣ ∂v
i
n

∂xn+1

(
∂vfn
∂xn

)−1
∣∣∣∣∣∣ (7.92)

Therefore, the integration is symplectic if Jn = 1, (leapfrog and the midpoint weighted forces

introduced in this chapter).
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Chapter 8

Concluding Remarks

The original purpose of this work was to develop a path sampling method based on a continuous-

time formalism to study rare events in physical systems. The unphysical results of the PSHMC

algorithm required a change of focus. Using a novel path sampling method based on the Metropolis

algorithm, I have uncovered interesting and enlightening insights into path sampling with the

Onsager-Machlup functional.

8.1 Ito-Girsanov Path Probability

The Ito-Girsanov expression for the probability has been studied for almost 40 years[17]. This

expression was used to define a path probability

− lnPIG = − ln
dPInformal

dQp
=

1

2 ε

(
V (x+)− V (x−) +

∫ T

0
dt G(xt)

)

as discussed in Equation 4.13. This work shows that the Ito-Girsanov expression has been misiden-

tified as a path probability distribution. The paths generated using this probability measure possess

an unphysical quality, which is shown in this thesis in two ways.

This unphysical nature was uncovered by direct calculation using the PSHMC algorithm in

Section 6.1.2. The ensemble of paths, all of which traverse an energy barrier in a simple 1D

potential, generated using this probability distribution are demonstrably unphysical.

In section 6.2, I displayed the results of a simple calculation was performed which displays one
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of the manifestations of the original OM statements, that the probability of every path of the same

length have an equivalent path probability. The original OM statement states that the log of the

path is proportional to the square of Gaussian variates, or equivalently, the random fluctuations

along the path. This noise history is imposed on the system by the temperature bath and is not

dependent on the configuration of the system. The path probability given from the Ito-Girsanov

theory implies just the opposite, that some paths are more probable than others. This preference

for some paths leads to a correlation between the positions and the noise, which is a fundamental

violation of the theory of statistical fluctuations. The PSHMC method is simply optimizing the

Ito-Girsanov measure, which leads to paths where correlation is rampant, which is at the core of

the unphysical paths seen in Section 6.1.2.

This misidentification can also be understood with the following observation. In the derivation of

the Ito-Girsanov probability, an infinity was regularized out of the expression using the fluctuations

of a Brownian bridge (Q). This means that the Brownian bridge is a fundamental object in PIG.

Now consider the Ornstein-Uhlenbeck (OU) process[41], where the exact solution to the sampling

is known. The OU process is a description of a Brownian motion of a particle who experiences a

linear restoring force (quadratic potential). The OU process has a frequency (ν) spectrum which

decays with a 1/ν tail, but is finite at low frequencies. The spectrum of the free process (Brownian

bridges for the case of double ended paths) still possess this 1/ν tail but diverges at low frequencies.

In schemes like the Random Walk Metropolis (RWM)[42, 43], mixing of Brownian bridges yields yet

another Brownian bridge, and thus will never yield a spectrum consistent with the OU spectrum.

This argument then motivates the conclusion that the Ito-Girsanov change of measure is only an

indicator of differences between the motion of a free particle and the true system dynamics. The

measure, PIG is not related to the relative probability of paths.

8.2 Probing the Underlying Measure

The question of why this has not been seen in previous studies remains. There have been

many independent studies which use this path probability measure[44, 45, 46], surely someone

will have seen the catastrophic nature of the paths produced. This question is at the heart of

this research, and the answer is very subtle. Using many sampling methods, such as Random
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Walk Metropolis (RWM), the random variates are drawn from the Gaussian distribution and the

sampling is performed directly with them. These methods only probe a subspace of solutions

admitted from the underlying measure. Recall that the change of measure used to derive the Ito-

Grisanov probability distribution is relative to the Brownian bridge. The RWM algorithm leads to

sensible results for short paths as the frequency spectrum is a fair approximation in the finite case.

For longer paths, numerical realizations will have an increasingly incorrect low frequency spectrum.

A consequence is that the number of Metropolis rejections dramatically increases. This is one point

that has been overlooked in the literature. In the PSHMC method, energy shifts between the various

modes during the deterministic integration step, driven by the effective Hamiltonian. It is in this

way that correlations get introduced.

8.3 The Lens of the Metropolis Algorithm

In this thesis, I develop a novel path space framework to sample double-ended paths which

are thermodynamically consistent with the underlying (Boltzmann) distribution. The important

contribution of this method is the errors are clearly understood. This contrasts to the hidden

integration errors which are present in the Brownian SDE. Furthermore, by carefully choosing an

integration procedure which minimizes the numerical error, alternative OM-like functionals can be

written which yield more accurate description of the path distribution.

8.4 Future Work

As previously discussed, the largest impact of this work for the continual development of path

sampling methods is the thorough analysis of the Ito-Girsanov probability. The identification that

this probability produces unphysical paths was previously undiscovered and any previous works

using the probability[1, 22, 23, 24, 25] could succumb to the same faults found using the PSHMC

method. These works need to be reexamined to see how my findings impact them.

Further work is also required to streamline the novel path space HMC method introduced in

Chapter 7. The current algorithm used to implement this method requires the Hessian of the

potential, which becomes extremely complicated and unwieldy for larger systems.

110



Bibliography

[1] Carsten Hartmann, Ralf Banisch, Marco Sarich, Tomasz Badowski, and Christof Schütte.
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